
Paper ID #27115

Using An Engineering Analysis Tool for Department Administration

Dr. Hugh Jack P.E., Western Carolina University

Dr. Jack is the Cass Ballenger Distinguished Professor of Engineering and Department Head of the
School of Engineering and Technology within Western Carolina University. His interests include robotics,
automation, and product design.

c©American Society for Engineering Education, 2019

Using An Engineering Analysis Tool for Department Administration

Abstract

The paper describes a basic application created using Matlab to assist in academic scheduling of
technical programs. The work presented is the first iteration of a larger system. For this first
phase of the project, the system uses standard (draft) schedule report spreadsheets. These are
processed to calculate individual faculty loads, detect conflicts, produce visual schedules, track
unstaffed courses, banked credit, etc. More importantly, the analysis uses information about the
structure of the curriculum to support cohort oriented scheduling.

The project has been implemented in Matlab using Tables. Although other platforms might be
better suited to this type of data analysis, the use of Matlab makes it easier to modify and extend
in Engineering schools. This is in major part due to the widespread use of Matlab in
Undergraduate and Graduate curriculum. The programs described in this paper are available for
other schools that would like to use and/or modify for their own purposes.[1]

Introduction

Administrative tasks like scheduling require substantial work doing iterations of menial
tabulations, analysis, and revision. Most colleges and universities have software that helps with
these tasks, but it is not well suited to a technical curriculum with extensive prerequisites,
laboratory/equipment/software constraints, and faculty availability. The result is a lot of manual
processing of spreadsheets and timetables.

At Western Carolina University (WCU) there are five residential undergraduate programs that
share a number of courses. In addition, there are two undergraduate programs that are offered
off-campus and a residential and an off-campus Master’s program. Growth over a few years has
outpaced the acquisition of new faculty, space, and equipment. The conflict of accommodating
more students within the constraints of the limited resources is making scheduling increasingly
more difficult. This work was inspired by standard scheduling duties such as finding overlapping
course times, faculty load calculation, keeping track of adjuncts, dealing with schedules to
accommodate students out of sequence, and integration with math and physics courses.

Tools were created to perform data manipulation and analysis for standard scheduling tasks.
These included calculations often foreign to other non-STEM departments such as differing
credit for teaching laboratories. At the point of writing the tools would automatically generate
schedules by individual program and indicate possible conflicts. Note: it is not currently the
authors’ goal to automate schedule creation, although this might occur later.

The toolchain used for the work was based on Matlab. Matlab provides excellent capabilities for
data analysis. (If needed, free alternatives exist including Octave and Scilab.) More importantly,
Matlab programming is widely used in technical schools so the expertise to modify, use, and
extend can be easily found. Scripts were written to read data from multiple spreadsheets in
Comma Separated Variable (CSV) formatted files. The files contained the routine output of a
draft schedule for any given semester. The scripts manipulate the data and update or generate
new spreadsheets. The scripts were written using standard Matlab functions and tables. It is
worth noting that previous work uses custom written software for Windows [2] and a web based
software tool [3]. Both of these are very capable, and in many ways better, than the current tool.
However, both require a greater knowledge of computer programming to adapt.

As an aside, the obvious questions is ‘Why not use the existing data system?’ At WCU the
student records system is based around Banner, by Elucian. Like most campus data management
systems, it is built around a database with numerous tables. In an ideal world, there would be
very good university-level resources for developing analysis scripts or at least access to the
database directly through Sequential Query Language (SQL) requests. But, at this point, the
system cannot process the multiple factors needed to analyze a schedule without spreadsheets.

The methodology is to download required data from Banner Reports in CSV formatted
spreadsheets. These reports include course lists for given semesters, grades for all students by
semester, etc. The input and output data files are stored in CSV spreadsheets. A directory
structure is used for organization and simplicity. This means that data values can be easily read
with any spreadsheet program.

The paper describes the tool in enough detail that it can be adapted for use in other engineering
and technology schools with little to no program modification.

Schedule Information

At most universities, the schedule is available in a spreadsheet format. A sample of the
spreadsheet used for this work is shown in Figure 1. As expected the column names are
somewhat cryptic, but over time they begin to make sense. The spreadsheet shown is for a past
semester, after registration, with enrolled students shown. This report (spreadsheet) is easily
generated for individual programs or the entire university.

Figure 1 - Screenshot of AvailableSections.csv Report

The key information in the spreadsheet, such as columns, will vary based on campus needs. For
the School of Engineering + Technology the useful information is listed below. It is worth noting
that between different reports the column names may change, complicating the import process.

● Student ID number (e.g. 920123456)
● CRN - a unique course section identification number (e.g. 80123)
● Subject (e.g. “ENGR”)
● Course number (e.g. 400)
● Section number (e.g. 01)
● Instruction method (e.g. WEB=distance, F=face-to-face)
● Campus (e.g., M=Main)
● Credit hours (e.g. 3 for a 3 hour lecture)
● Link - these codes tie registrations together (e.g. Lecture+Lab)
● Title (e.g. “Introduction to Engineering”)
● Maximum enrollment (e.g., 30)
● Enrolled students (e.g., 20)
● Available seats (e.g., 10)
● Class type (e.g., “LEC”, “LAB”, “IND”)
● Class Days (e.g., “MWF”, “TR”, “TBA”)
● Start time (e.g. “09:10AM”, “12:15PM”, “04:30PM”)
● End time
● Room (e.g. BL 266A)
● Instructor (e.g. “Jack H”)

In the application, these columns are renamed to standard titles and new columns are added. The
program has been written in a modular format to allow easy substitution of titles. The output
spreadsheet is shown in Figure 2. In addition to renaming the columns, a few basic calculations
have been made. This includes changing the time from AM/PM to military formats. The time
durations have been calculated. This requires some correction for academic practices such as 50
minutes = 1 hour and a 3-hour laboratory might be 2 hours and 45 minutes. It is worth noting
that the durations of ECET 452 and EE 311 are not an even or half and the times for these
courses will need to be adjusted. The weight reflects that laboratory time is discounted to 50%
for laboratories, a common practice. Once students are enrolled the SCH (Student Credit Hour)
and FTE (Full Time Equivalent) will be calculated.

Figure 2 - The processed schedule spreadsheet

Scheduling

As we know scheduling can be complicated in simple environments. In technical programs, these
problems are exacerbated by factors including,

- Long prerequisite strings where missing one course can delay graduation by a year.
- Limited offerings of critical classes including once per semester.
- Corequisite course requirements.
- Constraints like shared laboratories, equipment, and software.
- Multiple programs with shared courses.
- Courses for student cohorts must not overlap. Ideally accommodating students out of

sequence.
- Competition for space with other programs.
- Demand for blocked times including department meetings.
- Coordination with other departments including Physics and Math.
- Distances between spaces and transit time.
- Faculty preferences and time requirements.

The common, although not universal, approach to scheduling is - begin with a schedule from a
previous semester. The schedule is then adjusted to accommodate section
addition/deletion/modification, room changes, capacity changes, instructors, etc. The schedule is
then reviewed to find and correct conflicts. While a spreadsheet is adequate, a printed schedule
with all courses shown for a program makes it very easy to identify problems. Likewise, a
schedule printed for each instructor will identify conflicts.

The schedule is generated using the updated spreadsheet. The result is saved as an SVG
(Scalable Vector Graphics) file, shown in Figure 3. In this example, there is an overlap on
Monday and Wednesday mornings. But, the overlapping course is a prerequisite for the other
courses and will not be a problem. For complex schedules, these can become quite busy but the
SVG format allows zooming without image quality degradation.

Figure 3 - Sample course schedule

Faculty schedules are relatively easy to generate using the same method. Figure 4 shows a
schedule for one faculty member. In their case, there is a time conflict on Monday.

Figure 4 - Faculty schedule output

The process of schedule generation takes a few seconds. Changes to the schedule likewise take a
few minutes for simpler tasks. This allows a few full iterations of the schedule within an hour.

The process workflow is,

1. Download the ‘Banner Report’ spreadsheets with the data. Examples of these reports
include,

2. Files are renamed to reflect Semester and Year and moved to various directories for
analysis. Subdirectories are used to aid organization and reduce clutter.

3. Scripts are run and the results are stored as spreadsheets (CSV), images (SVG), and
‘documents’ (HTML).

4. (Scheduling) the schedules for the programs and faculty are examined. If needed, changes
are made. The results are then rerun (back to step 1.)

5. The numbers for session lengths, missing instructors, and similar problems are identified
and corrected if possible.

Although a humble start, these tools form the basis for detecting constraints automatically and
provide a framework for identifying faculty preferences such as full days for research. These will
be used in a future iteration of the program to support automatic iterative schedule adjustment.
This type of work has been done with many methods included genetic algorithms.

System Architecture

Ideally, the software and analysis needs would be handled by the IT and analysis offices on
campus. Practically there are limited resources and interest in developing tools for programs that
are only a small percentage of the university. Luckily many engineers are comfortable with
software and programming.

There are many excellent approaches to implementing this type of system. These include SQL
database queries, Python scripts, traditional programming, data analytics software, etc. The
method employed for this work was,

1. The data sources are various Comma Separated Variable (CSV) spreadsheets downloaded
from the university database (Banner.)

2. Programs were written in Matlab to take advantage of the broad knowledge within
engineering and technology schools.

3. The programs are run using Matlab as ‘.m’ files.
4. The output files are examined as spreadsheets or graphically using a browser to open an

HTML file with SVG images.

Of special note is the use of tables in Matlab. Unlike matrices, these allow mixed data types like
doubles and strings. It is then easy to address data elements by name instead of column number.

Coming Next

This platform promises to be an excellent vehicle for further analysis for schedule and student
data. The use of Matlab also increases the ability for technical schools to modify and maintain
the programs. Other features that are currently implemented or in development are listed.

● Automating degree audits to generate suggested schedules for future semesters.
Currently, the students can only retrieve a degree audit that shows remaining courses -
without prerequisite sequences and recommended semesters.

● Automatic screening for student major admission and progress tracking.
● Detailed tracking of students as they enter and leave the programs.
● (long-term) Automated schedule adjusting.

References

[1] Jack, H., Matlab Software Tools For Schedule Analysis, Google Drive Directory -
https://drive.google.com/open?id=11k8uBPOe85TiXf4BYAt7WN27ecvbLb4N

[2] Mihali, R., & Vamoser, D., & Sobh, T. (2001, June), Sked: A Course Scheduling And
Advising Software Paper presented at 2001 Annual Conference, Albuquerque, New Mexico.
https://peer.asee.org/9781

[3] Danda, P., A Web-Based System for Course Instruction and Student Advising, Master’s
Thesis, Department of Industrial and Management Systems Engineering, Morgantown, West
Virginia, 2009

https://drive.google.com/open?id=11k8uBPOe85TiXf4BYAt7WN27ecvbLb4N
https://peer.asee.org/9781

