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Using Computational Software Root Solvers: 

 A New Paradigm for Problem Solutions? 
 

 

 

 

Abstract 

Many of the “procedures” for solving engineering problems are formulations to solve an 

algebraic equation or a system of algebraic equations—to extract roots.  Computational software 

systems, such as Mathcad, Mathematica, Matlab, and EES, make possible “direct” solutions of 

root-finding problems in which the solution procedure is transparent to the user.  These 

computational systems permit a unified approach, a “new” paradigm, to be used for the solution 

to many engineering problems.  The unified approach consists of three steps: (1) formulate a 

well-posed system of algebraic equations, (2) use a computational system root solver to do the 

“arithmetic,” and (3) verify the results.  This paper explores the use of the unified approach for 

mechanical engineering problems and investigates the pedagogical inferences of the unified 

approach using computational software systems for undergraduates in Mechanical Engineering.  

The unified approach permits the student to focus more on the engineering aspects than the 

“arithmetic” aspects.  With less time spent on arithmetic, more time is available for students to 

engage is higher-level synthesis and understanding. 

 

Introduction 

 

Many of the “procedures” for solving engineering problems are formulations to solve an 

algebraic equation or a system of algebraic equations—to extract roots.  In general, an algebraic 

equation can be linear or nonlinear and a system of algebraic equations can contain both linear 

and nonlinear algebraic equations.  Recent computational software systems, such as Mathcad, 

Mathematica, Matlab, and EES, have made possible “direct” solutions of such problems in which 

the sometimes-laborious task, the procedure, of obtaining the solution is transparent to the user.  

Such equation or root solvers allow the students to concentrate on the engineering aspects of the 

problem, sparing them from being preoccupied by the details of finding the roots; i.e., solving the 

equations. The students can then focus their efforts on the engineering aspects of the problem by 

applying their engineering knowledge and skills to obtain a system of equations that represents 

the problem and that is sufficiently descriptive to provide a solution; i.e., to obtain a well-posed 

system of equations.  An additional pedagogical advantage of using the root solvers is that the 

students are forced to discern whether the numerical (or symbolic) answers provided by the 

equation solvers are reasonable. Thus, the advent of such computational systems permits a 

unified approach, a “new” paradigm, to be used for the solution to many engineering problems.  

For appropriate problems, the unified approach consists of three steps: (1) formulate a well-posed 

system of non-linear algebraic equations, (2) use a computational system root solver to do the 

“arithmetic,” and (3) verify the results. 

 

Computational systems provide robust root solvers for systems of algebraic equations.  Reference 

1, from Desktop Engineering, presents a convenient summary of capabilities of the most 

commonly used computational systems.  The “solve-block” structure in Mathcad, for example, 
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requires the identification of the system of equations, values of the known quantities, and initial 

guessed values for the unknowns to obtain the solution.  This is in stark contract to line-by-line 

coding of a root-solver procedure (Newton-Raphson, for instance) in a higher-level language 

(FORTRAN or C++) to solve such a system.   

 

The purposes of this paper are twofold: (1) to explore the use of the unified approach using 

computational software systems for mechanical engineering problems and (2) to investigate the 

pedagogical inferences of use of the unified approach with a computational software system in 

undergraduate mechanical engineering education.  From a pedagogical standpoint, the unified 

approach permits the student to focus more on the engineering aspects, the formulation and 

validation, than the arithmetic aspects, and from an applications standpoint, the unified approach 

provides the student with a very useful addition to the student’s engineering skill set.  

  

Consider the following diverse examples using the computational system, Mathcad.  All 

examples will be solved utilizing the three-step unified approach: (1) formulate the solution as a 

well-posed system of algebraic equations, (2) use the root solver to do the “arithmetic,” and (3) 

verify the results.  Example will be presented for an engineering economics problem, a vibrations 

problem, a pipe flow problem, and a cooling/bypass loop simulation.  Although Mathcad is the 

computational software system used in this paper, other computational software systems possess 

similar capabilities and could be used equally well. 

 

Examples 

 

Engineering Economics 

 

A simple example to illustrate the unified approach is provided by the capital recovery factor of 

the present worth of a uniform series 
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where A is the payment at intervals of m cycles during n years, P is the principal, and i is the 

interest rate per year.  The quotient A/P is the capital recovery factor.  Tabular values of A/P are  

provided in engineering economy textbooks, but the unified approach yields solutions without 

table interpolations.  Consider the following example. 

Example 1: 

(a) For a 4-year, $20,000 loan, what interest rate is required for monthly payments of $500? 

(b) How much could be borrowed at 6 percent interest and monthly payments of $500 for 4 

years? 

 

Solution: 

The solution is provided in Figure 1, the Mathcad worksheet.  The solutions for Parts (a) and (b) 

are illustrated in Parts (a) and (b), respectively, of Figure 1.  For both solutions, the solve block 
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structure of Mathcad is used.  The solve block is initiated by a Given and is terminated by a Find 

statement that specifies the unknowns.  In this case, a single equation, Equation (1), with four 

variables is included within the solve block.  The solve block can be used to solve for one of the 

variables, given the remaining three.  Thus, Parts (a) and (b) of the problem are similar; the only 

difference being the variable specified in the Find statement.  Essentially, all problems involving 

the present worth of a uniform series can be solved using this same solve block and specifying 

the appropriate unknown in the Find statement. 

Verification: 

Verification for this example consists of observing that for both parts of Example 1, the 

“numbers” are similar to what might be encountered in securing a car loan.  The results are what 

might be expected, so the first verification test is that the results are not irrational.  A more 

precise verification is provided in Part (c) of Figure 1.  In Part (c) of the figure, a function, 

A(i,P,m,n), expressing the functional relationship for the capital recovery factor of the present 

worth of a uniform series is defined and the results are verified by substituting i and P, 

respectively, into the function to recover the monthly payment, A.  In both cases, the function 

returns the appropriate value. 

P 21000:= n 4:= A 500:= m 12:= Define known quantities

i 2%:= Initial guess on interest rate

Given

A P

i

m
1

i

m
+





m n⋅
⋅

1
i

m
+





m n⋅
1−

⋅

i Find i( ):= i 6.705 %=  

(a) Solution to Part (a) 

i 6%:= n 4:= A 500:= m 12:= Define known quantities

P 1000:= Initial guess on principal

Given

A P

i

m
1

i

m
+





m n⋅
⋅

1
i

m
+





m n⋅

1−

⋅

P Find P( ):= P 21290.159=  

(b) Solution to Part (b) 

 

 

Figure 1.  Solutions for Example 1 

P
age 11.1377.4



A i P, m, n,( ) P
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m n⋅
⋅

1
i

m
+





m n⋅
1−

⋅:=

A 6.705% 21000, 12, 4,( ) 500.002=

A 6% 21290, 12, 4,( ) 499.996=  

(c) Verification of Solutions 

Figure 1.  Solutions for Example 1 (Concluded). 

Vibrations 

The normalized amplitude, Amp, of the vibration of the door panel of an automobile is given by 
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where c is the damping coefficient, ω is speed of the engine, and Ωf is the natural frequency of 

vibration of the door panel. 

 

Example 2: 

Find the speed of the engine for which the normalized amplitude is 2 for Ωf = 20 Hz. 

Solution: 

The solution steps are illustrated in Figure 2.  Figure 2(a) is a Mathcad plot of the normalized 

amplitude as a function of motor speed in rpm.  The function is double valued in rpm for a 

specified value of the normalized amplitude.  The solution is presented in Figure 2(b).  Part (a) of 

the figure indicates that a normalized amplitude of 2 occurs at about 750 rpm and at about 1500 

rpm.  These values are used as initial guesses in the Mathcad solve block in Part (b) of Figure 2.  

The normalized amplitude function is defined and then used in the solve block.  The solution 

results are 858 rpm and 1453 rpm.  Figure 2 indicated that the solution would be double valued 

in rpm.  By specifying two initial guesses in the solve block, both values are returned.  The user, 

thus, does not have to generate two separate solutions. 

 

Verification: 

The results presented in Figure 2(b) agree with the graphical representation in Figure 2(a). 

Pipe Flow 

 

Piping systems are ubiquitous in engineering systems and are characterized as series, parallel, or 

network.  Hodge2 explored the unified approach to solving a variety of piping systems problems. 

Part (a) 

Part (b) 
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(a) Plot of Normalized Amplitude as a Function of Engine Speed (rpm) 
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⋅+

:=

c 0.15:= Hz 60 rpm⋅:= Ω f 20 Hz⋅:= ω
750

1500









rpm⋅:=

Given

2 Amp ω c, Ω f,( )

Speed Find ω( ):= Speed
89.887

152.144









Hz= Speed
858.355

1452.869









rpm=
 

(b) Mathcad Solution 

Figure 2.  Solution for Example 2. 

 

Included in Reference 2 are series, parallel, and network examples.  The example presented 

herein is different from any of those in Reference 2.  

    

The unified approach to piping systems uses the energy equation [Hodge and Taylor3], cast 

between two stations in a pipe with a pump as the fundamental building block, 
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where sW  is the increase in head of the pump and K and C are the minor loss coefficients.  In 

addition, conservation of mass and uniqueness of pressure at a point are invoked.  The 

conventional solution “procedures” developed for any characterization of piping problem satisfy 

these principles either by formally applying them in as part of the problem formulation or by 

using them in a specified iterative sequence—the “procedure.”  Solutions for all series, parallel, 

Initial Guesses 
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and network hydraulic piping problems can be formulated as solutions to a non-linear equation or 

to a system of nonlinear algebraic equations.   

In Equation (1), expressions for the friction factor and fully rough friction factor, fT, are needed.  

In the laminar regime, the usual expression is 

D

f
Re

64
=                         (4) 

Several different representations are available for turbulent flow.  In this paper the representation 

of Haaland4 is used. 
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Minor loss terms are sometimes expressed as equivalent lengths using the fully-rough friction 

factor, fT, the asymptotic value of the friction factor for a given relative roughness.  From the 

Haaland equation, the fully-rough friction factor becomes 
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With the aforementioned as the basis for piping system problem solution formulation, an 

example of the unified approach will be examined and discussed. 

 

Example 3 

Water at 70 F is to be pumped from one reservoir to another reservoir located 20 ft above the first 

reservoir.  A pump with a characteristic curve (increase in head versus the flow rate) 

 gpmQforQQQW s 150000003911.0004362.0127.033.403 32 <<⋅−⋅+⋅−=              (7) 

where Ws is in ft-lbf/lbm when Q is in gpm, is in the system.  The system consists of 2000 ft of 

schedule 40 nominal 3-inch commercial steel pipe.  Minor losses total K = 1000 and C = 0.  Find 

the flow rate the pump will produce in the system. 

 

Solution: 

The unified approach solution is provided in Figure 3.  Much of the contents of the figure are 

specifying the system boundary conditions, the physical properties, the friction factor 

representation, and the units.  As with the other examples, the solution is accomplished in the 

solve block.  Prior to the solve block specification, initial estimates of the two unknowns, the 

pump increase in head and the flow rate, are provided.  The pump characteristic equation, with 

appropriate units is defined as is the energy equation for the system.  The Find statement contains 

the two unknowns.  The pump increase in head and the flow rate, the pump-system operating 

point, are 393 ft-lbf/lbm and 105 gpm, respectively.  A similar worksheet can be used to solve all 

series hydraulic piping problems by suitably modifying the solve block and the Find statement. P
age 11.1377.7



gc 32.174
ft lb⋅

lbf sec
2

⋅

⋅:=g 32.174
ft

sec
2

⋅:=

Define constants and adjust units for consistency:

µ 0.000658
lb

ft sec⋅
⋅:=ρ 62.3

lb

ft
3

⋅:=

       Density in lbm/ft 3                 Viscosity in lbm/ft-s

Input the fluid properties:

C 0:=K 1000:=

              K factor                    Equivalent length

Input the loss coefficients:

Za

Zb









0

20









ft⋅:=
Pa

Pb









0

0








lbf

in
2

⋅:=

          Pressures in psi              Elevations in feet:

Input the system boundary (initial and end) conditions:

ε 0.00015ft⋅:=L 2000 ft⋅:=D 3.068 in⋅:=

      Diameter in inches           Length in feet            Roughness in feet:

Input the pipe geometry:

Reset counter from the default value of 0 to 1.ORIGIN 1≡

 

Define the functions for Reynolds number, fully-rough friction factor, and friction factor:

Re q d,( )
4 ρ⋅ q⋅

π d⋅ µ⋅
:= fT d ε,( ) 0.3086

log
ε

3.7 d⋅






1.11







2
:=

f q d, ε,( ) 0.3086

log
6.9

Re q d,( )

ε

3.7 d⋅






1.11

+








2
Re q d,( ) 2300>if

64

Re q d,( )
otherwise

:=

 

 

Figure 3. Mathcad Solution for Problem 3.
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Ws 100 ft⋅
lbf

lb
⋅:= (Initial guess of pump increase in head.)

gpm
gal

min
:=

Q 50
gal

min
⋅:= (Initial guess of flow rate.)

Given

Ws 403.33 0.127
Q

gpm
⋅− 0.004362

Q

gpm







2

⋅+ 0.00003911
Q

gpm







3

⋅−








ft lbf⋅

lb
⋅

Ws

gc

g
⋅

Pb Pa−

ρ g⋅
gc⋅ Zb+ Za−

8

π
2

Q
2

g D( )
4

⋅

⋅ f Q D, ε,( ) L

D
⋅ K+ C fT D ε,( )⋅+





⋅+

Ws

Q









Find Ws Q,( ):= Ws 392.868ft
lbf

lb
⋅= Q 104.887

gal

min
=

 

(a) Solution 

PWs 403.33 0.127
Q

gpm
⋅− 0.004362

Q

gpm







2

⋅+ 0.00003911
Q

gpm







3

⋅−








ft lbf⋅

lb
⋅:=

PWs 392.868ft
lbf

lb
⋅=

EWs

Pb Pa−

ρ g⋅
gc⋅ Zb+ Za−

8

π
2

Q
2

g D( )
4

⋅

⋅ f Q D, ε,( ) L

D
⋅ K+ C fT D ε,( )⋅+





⋅+








:=

EWs 392.868ft=  

(b) Verification 

Figure 3. Mathcad Solution for Problem 3 (Concluded). 

Verification: 

The first point of verification is that the flow rate, 105 gpm, falls within the specified flow rate 

range of the pump.  In Part (b) of Figure 3 the increase in head of the pump, PWs, is computed 

from the pump characteristic curve given the operating point flow rate.  The energy equation 

increase in head requirement, EWs , is also computed.  Both values are identical and are equal to 

the returned value, Ws, of the solution. 

 

System Simulation 

 

Systems of algebraic equations arise naturally in many steady-state system simulations.  The use 

of computational system root solvers alleviates considerable programming effort and permits the 

student to concentrate on the engineering aspects of the problem.  Consider the following thermal 

system simulation example. 

 

Example 4: 

Characteristics and specifications for an oil cooler system are delineated below.  A system 

schematic is provided in Figure 4.   
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Figure 4.  Schematic for Oil Cooler System. 

 

 

System characteristics: 

  Line  D (sch 40)            L (ft)   

    1     3 ½ in  100             

    2     3 ½ in  200  

 

Oil properties (constant): ρ = 54.3 lbm/ft3 

    ν = 9.8 x 10-5  ft2/sec 

    c = 0.48 Btu/lbm-F 

    Tin = 200 F 

 

Pump characteristic curve: Ws = 214.2 + 0.05Q - 0.0005833Q2 (Q in gpm)                      (8) 

 

Water properties:  mass flow rate = 30 lbm/sec 

    Tin = 70 F 

 

Heat Exchanger:  A =  400 ft2                 (9)  

    HX = 0.0045Q1.9            (10) 

 

Determine the exit temperature of the oil. 

Solution: 

This solution to this system simulation problem involves both hydraulic and thermal 

considerations.  If constant thermophysical properties are considered, the hydraulic and thermal 

solutions can be decoupled and the exit temperature calculated after the individual pipe flow 

rates are known.  In this example, both the hydraulic and thermal portions will be worked in a 

single solve block.  Lines 1 and 2 form a parallel network, so the total change in head for pipe 1 

must be equal to the total change in head for pipe 2.  The energy equation, as referenced in 

Example 3, is used to describe the changes in heads of the individual pipes.  Once the pipe flow 

Heat Exchanger 

1 

2 
Pump  

 

QT 
Q1 

Q2 

QT Valve  

Node A Node B 
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rates are known, the temperature of the oil exiting the heat exchanger can be determined.  The 

determination of the temperature of the oil exiting the heat exchanger is a heat exchanger 

analysis problem and proceeds from capacity to NTU to effectiveness to rating to exit 

temperature.  An energy balance must be performed at node B to determine the exit temperature 

of the oil at it leaves the system.  An energy balance at node B yields 

 
2

2
1

1 T
Q

Q
T

Q

Q
T

TT

exit ⋅+⋅=                      (11) 

Figure 5 delineates the Mathcad worksheet for the problem solution.  The solve block contains 

13 equations and the Find function is used to determine the 13 unknowns.  The exit temperature 

for the conditions of the problem statement is 151.6 F.  Other values of important variables are 

also presented in the figure.  

 

Verification: 

The solution values are all reasonable.  If the individual equations describing the system are 

evaluated, all values are consistent. 

  

Pedagogical Inferences and Conclusions 

 

One purpose of this paper is to discuss a unified approach to solving many problems of 

engineering interest.  In all the examples explored in this paper, the same three steps are used.  

The treatments of all the example problems are identical and emphasize the three steps: (1) 

formulate a well-posed system of algebraic equations,  (2) use the root solver to do the 

“arithmetic,” and (3) verify the results.  The arithmetic has been accomplished by using the 

Solve-Find structure of Mathcad.  Other computational software systems (Mathematics, 

Matlab,….) offer the same capability, albeit in different formats, but with the same results. 

   

The second purpose of this paper is to examine the pedagogical inferences of undergraduates 

routinely using structured root solvers in a Mechanical Engineering (ME) program.  For nearly a 

decade the ME program at Mississippi State University (MSU) has used Mathcad as the 

computational tool for undergraduate (and some graduate) ME courses.  The observations and 

inferences made in this paragraph are all anecdotal.  Faculty response has been uniformly 

enthusiastic. Indeed, one faculty member remarked that Mathcad has made his courses much 

more fun—for both teacher and student.  The impact of Mathcad on a required ME energy 

systems design course at MSU was examined in Hodge5.  In that paper, he concluded that the use 

of Mathcad permitted more realistic design problems to be assigned since the student effort 

required to debug/modify a Mathcad-based solution was less than the time required to debug a 

Fortran or C++ program.  The use of solve blocks, such as the pipe flow solution in Example 3, 

comprised an important component in the energy systems design course. 

 

One area of pedagogical concern expressed by faculty members about using structured solvers 

for an algebraic equation or systems of algebraic equations is that students no longer have an in-

depth understanding of the procedures required to solve a particular problem.  This is a legitimate 

concern, but the same concern could be raised by many “new” techniques driven by computer 

capability and availability.  The students do not need to possess extensive expertise in 
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“procedures” that have been replaced by more time-effective techniques—the solve block in this 

discussion.  Some MSU ME faculty have observed that by emphasizing the formulation of a 

well-posed system of equations using fundamental principles that students have become more 

competent with the “physics” of the problem and more able to transfer that competence to other 

situations.  In an informal survey of MSU ME students concerning the use of the Mathcad solve 

block procedure discussed in this paper, students often commented that the emphasis on problem 

formulation required by the solve block had strengthened their understanding of the basic 

principles.  Students also realize the time and effort saved by using the computational systems 

since in some courses the traditional approaches are still used.  The students appreciate the 

attention to problem solution using the three-step unified approach. 

 

The use of Mathcad with its Solve-Find structure relieves the student from assimilating different 

numerical techniques (“procedures”) to solve a non-linear equation or a system of non-linear 

equations.  The net result is that more involved and more realistic problems can be assigned.  

With less time spent on arithmetic, more time is available for students to engage is higher-level 

synthesis and understanding. 
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Initial guesses for the unknowns are needed to use the solve block.

Q1 125
gal

min
⋅:= Re1 100000:= Cmin 5

BTU

sec R⋅
⋅:= K 2.85:=

Q2 125
gal

min
⋅:= Re2 100000:= C

Cmin

Cmax

:= ξ 0.5:=

HP 216 ft⋅:= HX 216 ft⋅:= NTU 2:= gpm
gal

min
:=

U 10
BTU

hr ft
2

⋅ R⋅

⋅:= Tout 130 F⋅:= Texit 190 F⋅:=

 

Figure 5. Solution of System Simulation Example.  P
age 11.1377.12



The solve block equations are next defined.

Given

QT Q1 Q2+ Re1

Q1

Ac

ID

υ
⋅ Re2

Q2

Ac

ID

υ
⋅

HX 0.0045ft
Q2

gpm









1.9

⋅

HP 214.2 ft⋅ 0.05 ft⋅
Q2

gpm
⋅+ 0.0005833ft⋅

Q2

gpm









2

⋅−

1

2 g⋅ Ac
2

⋅

Q1( )2⋅ K ff Re1( )
L1

ID
⋅+









⋅
1

2 g⋅ Ac
2

⋅

Q2( )2⋅ ff Re2( )⋅
L2

ID
⋅ HX+ HP−

  

  

Cmin Q2 ρ oil⋅ coil⋅ C
Cmin

Cmax

U

BTU

hr ft
2

⋅ R⋅

5.75

Re2
0.8









0.004+
NTU

U Ahx⋅

Cmin

 

ξ
1 exp NTU− 1 C−( )⋅[ ]−

1 C exp NTU− 1 C−( )⋅[ ]⋅−
Tout Tin ξ Tin Twater−( )⋅−

Texit

Q1

QT

Tin⋅
Q2

QT

Tout⋅+

ans Find Q1 Q2, HX, HP, Re1, Re2, Cmin, C, U, NTU, ξ, Tout, Texit,( ):=  

  

Figure 5. Solution of System Simulation Example (Concluded). 

Q1 ans0:=
 

Q1 189.142
gal

min
=

  

NTU ans9:=
 

NTU 1.284=  

Q2 ans1:=
 

Q2 260.858
gal

min
=

  

ξ ans10:=
 

ξ 0.642=  

C ans7:=
 

C 0.505=    
Tout ans11:=

 
Tout 116.532F=  

U ans8:=
 

U 175.017
BTU

hr ft
2
R⋅

=

  

Texit ans12:=
 

Texit 151.615F=  
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