
1

Using Java To Develop Educational
Engineering Software

John A. Reed, Abdollah A. Afjeh
The University of Toledo

Introduction
One of the most exciting recent developments in software technology is Java, the programming
system developed by Sun Microsystems Inc.1 Since its introduction in early 1995, both the
technical and mainstream press have been filled with articles about how Java will revolutionize
the nature of the World Wide Web (WWW), client/server application development, and the
economic model for software delivery. With all of the media hype, it is easy to lose sight as to
what Java is, and why it is so interesting. For many people, Java is simply a way to add “flash” to
otherwise static WWW pages. However, what is truly exciting about Java is that, for the first time,
it is possible to write highly interactive, graphical applications which are platform-independent
and can be transported across the WWW. These features, combined with the availability and
pervasiveness of the Internet and WWW, make Java an attractive tool for developing and
distributing educational software.

Background
To understand the potential benefits of Java for educational software development, it is necessary
to understand some of Java’s main features. First of all, Java is a general purpose object-oriented
(OO) programming language offering OO capabilities such as data abstraction, encapsulation,
polymorphism, and inheritance2. Object-oriented programming makes it possible to write robust,
modular code which is easily modified and extended. Java was designed to be syntactically
similar to C++, which is currently the most popular OO language. However, it was designed to be
simpler to learn than C++, and thus removes many of C++’s shortcomings which make it complex
and confusing. In addition, Java adds many of the better object-oriented features available in other
object-oriented languages which are missing in C++. The most notable enhancements are the
elimination of pointer-arithmetic, and the addition of automatic memory management (garbage
collection).

The most significant feature of Java is the ability to create extremely portable applications. Unlike
traditional programming languages which generate programs which are platform specific, Java
code is compiled into an architecturally neutral file format (byte-codes) which permits a compiled
Java program to be transported to platforms of differing architecture. The Java program can then
be run on any computer which implements a Java interpreter and run-time system known as the
Java Virtual Machine (JVM). The use of byte-coding and implementation of the JVM allows a
Java program to achieve a high degree of portability: a Java code, compiled into byte-codes is
portable to any machine which implements the JVM. This makes it possible to write a program
once, without regard to a specific platform, and run it on any computer platform which
implements the JVM.

Session 2302

P
age 2.473.1

2

The use of byte-codes and the virtual machine have made possible the development of Java
applets: small Java programs which are transmitted across the WWW and run on the receiving
computer. Applets bring the interactive capabilities of traditional desktop applications to the
WWW. Furthermore, the platform independent nature of Java applets make it possible to develop,
maintain and distribute a single version of a code from a WWW server, instead of multiple
versions for each computer architecture and operating system combination.

Applets are typically embedded in a WWW page, and execute within a Java-enabled browser.
When a page containing an applet is retrieved, the applet’s byte codes are transferred across the
network from the server to the student’s computer. On the student’s computer, the applet’s byte-
code is automatically loaded and run by the Java interpreter built into the web browser. The
browser implements the Java runtime interpreter as well as graphical support for the applet.
Because applets (generally) load from machines on the network, they are restricted from
implementing certain functions for security reasons. For example, applets may not read, write or
modify files on the local (client) machine. This non-secure state is indicated by the “Unsigned
Java Applet Window” message displayed in the bottom of any applet graphical window (see any
of the figures in this paper for an example).

Java and Education
The ability to construct interactive programs which are easily distributed across the WWW, make
Java of considerable interest to educational software developers. Java-enabled browsers, such as
Netscape Navigator™ or Microsoft Internet Explorer™, are now common in educational
institutions and provide students with easy access to applets from any type of computer. With Java
it is possible, for example, to enhance courseware through animations, present virtual lab
exercise, or develop and distribute tutorials as easily as distributing standard WWW pages. This
capability has not gone un-noticed in the educational community. In the short period since Java’s
release, over 600 educational applets have already been developed. At the time of this writing,
nearly 100 engineering-specific educational applets have been listed atGamelan, the official
directory for Java applets3. These applets cover topics in all engineering disciplines, and although
the majority of these are relatively simple and problem-specific, several sophisticated applets have
been developed which demonstrate the effectiveness of using Java to develop educational
software. Some notable example are listed as follows: TheJava Virtual Wind Tunnel applet,
developed by David Oh demonstrates two-dimensional implementation of computational fluid
dynamics, including visualization of flow over solid objects4. TheDigital Simulator, provides the
ability to build and test digital circuits5. TheIdeal Flow Machine andIdeal Flow Mapper applets,
developed by William Devenport, are educational applets which allow the user to interactively
create and visualize ideal flow6. TheJava Beam allows students to investigate mechanical design
of supported beams using an interactive and configurable interface7.

In this paper, we describe our work in developing a Java applet which is to be used for instructing
graduate and undergraduate students in the operation of gas turbine engine. The complex
operating nature of the gas turbine system makes it a challenging subject to teach to students. The
strongly-coupled nature of the engine’s flow physics (and thus equations), combined with the
large number of engine parameter variables, form an often large, non-linear system of equations
which the student must solve. Consequently, computer programs capable of simulating gas
turbine engines are usually provided to reduce the amount of hand-calculations needed. These

P
age 2.473.2

3

programs solve the problem at hand, but do not necessarily add to the student’s knowledge of how
the gas turbine operates. The gas turbine simulator described in the remainder of this paper, is
aimed at providing an integrated environment for more effectively illustrating the operation of the
gas turbine engine.

Java Gas Turbine Simulation Software
The Java Gas Turbine Simulator applet provides an interactive graphical environment which
allows the rapid, efficient construction and analysis of arbitrary gas turbine systems. The
simulation system couples a graphical user-interface, developed using the Java Abstract Window
Toolkit, and a transient, space-averaged, aero-thermodynamic gas turbine analysis method
entirely coded in the Java language. The combined package provides analytical, graphical and
data management tools which allow the student to construct and control dynamic gas turbine
simulations by manipulating graphical objects on the computer display screen. The simulator,
running as a Java applet, can be easily accessed and run from a variety of heterogeneous computer
platforms, including PC’s, Macintosh™, and UNIX™ machines, through the use of Java-enabled
WWW browsers.

The gas turbine analysis model used in the Java Gas Turbine Simulator is derived from the NASA
DIGTEM code8. A complete description of the model can be found in ref. 9. In this model, the gas
turbine system is decomposed into its individual components: inlet, compressor, combustor,
turbine, nozzle, bleed duct connecting duct, and connecting shaft. Intercomponent mixing
volumes are used to connect two successive components as well as define temperature and
pressure at component boundaries. Operation of each of the components is described by the
equations of aero-thermodynamics which are space-averaged to provide a lumped-parameter
model for each component. For dynamic (transient) gas turbine operation, the model includes the
unsteady equations for fluid momentum in connecting ducts, inertia in rotating shafts, and mass
and energy storage in intercomponent mixing volumes. Overall performance maps are used to
provide accurate steady-state representations of compressor and turbine component operation.
Variable geometry effects in the compressor are accounted for using baseline maps that
correspond to nominally scheduled geometry. Variable geometry maps are then used to bias the
baseline map outputs by functions of the actual geometry.

In the Java Gas Turbine Simulator, the object-oriented programming features of the Java language
are used to develop a digital representation of the gas turbine engine analysis model. Each of the
components listed above are represented as objects in the simulator. Each component’s
characteristics, such as its data (e.g., performance maps) and methods (e.g., the mathematical
equations used to describe its operation) are encapsulated within each object. The object-oriented
nature of the Java language allows the program to model any gas turbine engine by combining
specified types of component objects in almost any order. Currently, the following engine
component types are available: AeroMixingVolume, BleedDuct, BleedCooledTurbine,
Combustor, Environment, FuelSource, Nozzle, RotorShaft, StoredMassDuct, and
VariableCompressor.

When the individual components in the gas turbine system are combined, each StoredMassDuct,
RotorShaft, and AeroMixingVolume contributes its respective unsteady equation to form a system
of unsteady ordinary differential equations. This system may then be solved using standard

P
age 2.473.3

4

numerically techniques such as Newton-Raphson, Runge-Kutta, etc. In the Java Gas Turbine
Simulator, the process of combining components to form a gas turbine model is performed
graphically by the student. Several numerical solvers are built into the system and can easily be
selected by the student to solve the system of equations. This process will be illustrated in more
detail in the next section.

Conducting a Simulation
Students begin a simulation by using a Java-enabled WWW browser to connect to the Java Gas
Turbine Simulator webpage located on The University of Toledo Mechanical, Industrial &
Manufacturing Engineering (M.I.M.E.) department web-server. This page contains the embedded
Java Gas Turbine Simulator applet. In addition to the applet, the student may access additional
information about the simulator using the hypertext links in the webpage. These links include
access to a Java Gas Turbine Simulator tutorial, other publications on the simulator and related
subjects, and information on the development of the Java Gas Turbine Simulator. The student
displays the simulator by selecting the “Display Simulator” button, located within the web page.
This action initiates the loading of the applet byte-codes to the browser’s Java interpreter. When
the loading is completed, the Java Gas Turbine Simulator’sMain window (see Figure 1) is
displayed on the computer screen. From theMain window, the student can access the various
windows of the simulation system:Engine Schematic Layout, System Control Dialog, Graphing,
Transcript andHelp windows. Selecting theExit button closes all opened windows exceptMain.
TheMain window is closed by selecting the “Dispose Simulator” button.

The graphics and windowing components which make up the Java Gas Turbine Simulator user-
interface are built using the Java Abstract Window Toolkit (AWT)10. The AWT, which is part of
the Java runtime system, provides a collection of platform-independent components for building
graphical applications in Java. The AWT offers support for graphics operations, as well as
supplying common graphical user-interface objects such as Buttons, Lists, TextFields, Choice
boxes, etc. Platform independence is achieved through the use ofPeers which are native GUI
components manipulated by the AWT. Peers allow Java programs that use the AWT to retain the
familiar look and feel of the host computer’s native windowing system. This means that when a
Java program is run on a Macintosh computer, the Buttons, Windows, List boxes, etc., all appear
in the familiar Macintosh style. When the same program is run on a computer running Windows
NT™, those components will appear as familiar Windows NT-style objects. To demonstrate, this,
the Java Gas Turbine Simulator was run on several different computers using the Netscape

Navigator browser and color images of the various windows
were captured and are reproduced here. Figures 1, 2, and 7 are
Motif graphics; figures 3 and 5 are Windows NT-style; and
figures 4 and 6 are Macintosh-style.

Visual Construction of the Model. A gas turbine simulation
model is developed by building a schematic representation of
the gas turbine in theEngine Schematic Layout window (see
Figure 2). Individual engine components are represented
graphically as icons with each class of engine object (e.g.,
BleedDuct, VariableCompressor, etc.) having a uniquely
shaped and colored graphical representation. The studentFigure 1:Main window

P
age 2.473.4

5

selects engine components to add to the model from theComponents menu located in the
EngineSchematicLayout menu bar. The component’s icon is displayed in the work area and a
Dialog window for that engine object is also displayed. The engine component’s dialog window
provides the means for the student to define the operational characteristics of the component (i.e.,
the component name, design- and initial-operating point performance data, etc.). For example,
Figure 3 shows the dialog window for anAeroMixingVolume component. Similar dialogs,
with appropriate design- and operating-point parameters, are used for each of the other engine
components. Additional engine components are added as needed to complete the engine model.
Once all of the icons have been placed on the schematic work area, they may be dragged into
place and interconnected to create the engine schematic diagram. In the diagram, the arrow-

headed connecting lines represent both the directional
flow path for fluid through the engine, and the structural
connections along which mechanical energy is
transmitted. Figure 2 shows theEngine Schematic Layout
window with a typical gas turbine engine model.

Graphing. For information on the physical processes
occurring in the gas turbine, the student may graph
various component parameters during the transient.
Pressing theGraphing selection button on theMain
window displays theGraph Control Dialog(see Figure
4). As its name suggests, this dialog provides the student
with control over parameters to be graphed during the
transient portion of the simulation. From this dialog, the
student may select to graph a number of specified
parameters for any of the components currently displayed
in theEngine Schematic Layout window.

Figure 2:Engine Schematic Layout window

Figure 3:AeroMixingVolumeDialogwindow

P
age 2.473.5

6

TheGraph Control Dialog is comprised of two
List components. The left-hand List displays each
of the engine components currently displayed in
theEngine Schematic Layout window. The right-
hand List displays parameters to be graphed for
the selected engine component. This List allows
multiple selections, allowing the student to select
to graph any of the component’s parameters. To
illustrate its use, consider the following example
as depicted in Figures 4 and 5. Here the student
has selected the component namedMV13. This
component is anAeroMixingVolume object
and as such has graph parameters ofVolume ,
Stored Mass , Temperature , etc., which are
shown in the right-hand List. From that List, the

student has selected to graph theTemperature andPressure parameters during the
transient. Figure 5 shows theTemperature andPressure graphing windows which are
displayed during the transient. Note that the student has also selected to graph the
Temperature andPressure parameters of theMV3, MV4, andMV41 components for
comparison.

TheGraph Control Dialogmay also be used after a simulation to view other parameters not
graphed during the simulation. TheGraph Control Dialog object acts as a database for each of the
parameters listed in theGraph Control Dialog, and as such acts as a post-processor, displaying
each of the listed parameters after the simulation has completed.

Selecting Numerical Solvers.Once all of the gas turbine engine components have been
connected and their input data entered, the student may define the system solvers and transient
duration. In a transient analysis, the gas turbine system is settled (balanced) at or near the user
defined initial operating point before beginning the transient. Currently, two steady-state

Figure 4:Graph Control Dialogwindow

Figure 5:Transient Graphwindows

P
age 2.473.6

7

balancing methods are implemented:Newton-Raphson andFourth-order Runge-
Kutta . Four transient integration methods are available:Improved Euler , Fourth-order
Runge-Kutta , Adams, andGear .

TheSystem Control Dialog window (see Figure 6), which provides controls for the overall
operation of the simulation, is accessed by depressing theSystem Controllers button in the
Main window (see Figure 1). The steady-state numerical solver used to balance the gas turbine
equations at the initial operating point is selected from a list of available solvers. This list is
displayed using a Choice component which shows the current list selection. In Figure 6, the
Newton-Raphson method has been selected as the steady-state solver. Similarly, the transient
solver may be selected from the list of available transient solvers. In Figure 6, theImproved
Euler method has been selected. The student may edit either of the selected solver’s parameters
by depressing the steady-state or transientEdit Configuration buttons. ATransient Solver
Dialog (not pictured) for the selected method is displayed. Using this dialog, the student can
define specific control values for the solver’s operation. Similar dialogs are available for each of
the available solvers, and selecting a different solver from the list will bring up different control
parameters specific to the newly selected solver.

Below both the steady-state and transient solver selectors are the steady-state and transient
Progress Indicators. These indicators act as gauges which provide visual feedback to the user
during the simulation indicating the progress of the steady-state balancing or transient integration
processes. The steady-stateProgress Indicator displays the number of equations which have
converged to steady-state. The transientProgress Indicator displays the elapsed time of the
transient. For example, in Figure 6, theConverged Equations Progress Indicatorshows that
all 16 of the system equations have converged, and that, as shown by theElapsed Time
Progress Indicator, the transient simulation has progressed to 0.6 of a 2.5 seconds-long transient.

Running the simulation. After the engine configuration has been constructed, graph parameters
selected, and the steady-state and transient solvers have been established, the student can begin
the simulation by pressing theRun Simulation button located in theSystem Control Dialog
window. The simulator first attempts to determine the steady-state (balanced) condition at the

Figure 6: System Control Dialogwindow

P
age 2.473.7

8

initial operating point, as was defined by
the student. Once the engine is balanced,
the transient will begin. (If the student has
defined a simulation ending time of zero
in theSystem Control Dialog, the
simulation will terminate giving only a
steady-state solution.) The transient will
run until the simulation time exceeds the
Simulation Duration value entered
in theSystem Control Dialog.

On-line help browser. The student may
obtain additional information about the simulator by selecting theHelp button from theMain
window, or from the menu bars in other windows. TheHelpbrowser (see Figure 7) provides
hypertext access to on-line documentation located on the web server using Java’s built in support
for WWW network access. From the browser, the student may access hypertext documents which
describe the analysis theory used in the simulator, tutorials, and references which the student can
use for further study. Another use of theHelpbrowser is to provide student “examinations.”
Instructors can easily create hypertext files which contain questions (and answers) about gas
turbine operation. Because the file is centrally located on the web server, there is only one file to
edit, ensuring that all students have the same questions and simplifying the update processes.
Although not implemented at this time, it is possible to create interactive forms which could be
used to collect student responses for on-line grading.

Summary
The Java Gas Turbine Simulation software described in this paper provides an improved computer
simulation environment for instructing students in gas turbine operation. As a Java applet, the
simulator provides advantages over traditional simulation programs by allowing students access
from any networked computer. This, combined with freely available Java-enabled WWW
browsers capable of operating on a large number of differing computing platforms make the
simulator widely accessible. The portability offered by the Java language and the platform
independence of the AWT make Java an ideal language and runtime system for developing
interactive educational software for use on networked, heterogeneous computer systems such as
the World-wide Web.

The Java Gas Turbine Simulator provides advantages over traditional static gas turbine computer
programs by allowing students to visually construct gas turbine models - a process which
enhances the students appreciation of how a gas turbine is constructed. In addition, allowing the
student to define the various engine component parameters aids in the identification of (1)
information needed to carry out the simulation, and (2) variables that influence a component’s
performance. Moreover, it depicts how the governing equations are applied. Finally, simulation
output in a visual format helps improve the student’s understanding of how gas turbine
components interact and how their parameters change during a transient.

This work also illustrates how programs written in Java address two common problem areas in
educational software: 1) maintaining specialized software in a multi-platform environment, and 2)

Figure 7: Help Browserwindow

P
age 2.473.8

9

software distribution. Universities, as well as students, often utilize a wide variety of computing
platforms including PC’s, Macintosh, and Unix computers. Until now, it has been difficult and
costly to provide and maintain specialized versions of a given program for each platform. As
hardware and operating systems are upgraded, the software must be updated and re-installed. As a
result, in most cases, a program for a specific platform is presented and the student is forced to
work on that type of computer. The platform independent nature of the Java program and wide
availability of Java-enabled browsers reduce the need for specialized versions of software as a
Java program will run on any of the major platforms. The process of software distribution is also
simplified as the Java program may be delivered easily across the Internet directly to the student’s
computer. There is no need to install the software, since Java programs are loaded automatically
upon being downloaded to the student’s computer.

Acknowledgments
We would like to acknowledge the NASA Lewis Research Center Computing and Interdisciplinary Systems Office
for partial support of this work (Grant No. NCC-3-207). In particular, we would like to thank Greg Follen for his
continued support. J. A. Reed is partially supported by a University of Toledo Doctoral Fellowship. For directions on
accessing the Java Gas Turbine Simulator applet, send e-mail to jreed@top.eng.utoledo.edu.

Bibliography
[1] Gosling, J., Joy, B., and Steele, G., “The Java Programming Language (version 1.0),” Addison Wesley, July

1996.

[2] Booch, G, “Object Oriented Design with Applications,” The Benjamin/Cummings Publishing Company, Inc.,
New York, 1991.

[3] On-line document. URL: http://www.gamelan.com/

[4] On-line document. URL: http://raphael.mit.edu/Java/

[5] On-line document. URL: http://www.lookup.com/Homepages/96457/digsim/load.html

[6] On-line document. URL: http://www.aoe.vt.edu/aoe/faculty/davenfac.html

[7] On-line document. URL: http://ecsel.engr.washington.edu/JavaBeam/beams/simpleSupport.html

[8] Daniele, C. J., Krosel, S. M., Szuch, J. R., and Westerkamp, E. J., “Digital Computer Program for Generating
Dynamic Engine Models (DIGTEM),” NASA TM-83446, 1983.

[9] Reed, J., “Development of an interactive graphical propulsion system simulator,” Master of Science Thesis,
The University of Toledo, Toledo, Ohio (August 1993).

[10] Gosling, J., and Yellin, F., “The Java Application Programming Interface: Window Toolkit and Applets,”
Addison Wesley, June 1996.

Biography
JOHN A. REED received his B.S and M.S. degrees in Mechanical Engineering at the University of Toledo in 1989
and 1993, respectively. He is currently pursuing his Ph.D. degree at the University of Toledo, where he is a University
Doctoral Fellow. His research interests include developing computer simulation frameworks for multi-disciplinary
systems, distributed heterogeneous computing, and developing engineering education software systems.

ABDOLLAH A. AFJEH is Professor and Director of Graduate Studies in the Mechanical, Industrial and
Manufacturing Engineering department at the University of Toledo. He received his Ph.D. in Engineering Science
form the University of Toledo in 1984. He is a member of ASME, AIAA as well as honorary societies Pi Tau Sigma,
Phi Kappa Phi, and Sigma XI.

P
age 2.473.9

