
AC 2008-1219: USING PROGRAMMING PROJECTS IN AN OPERATING
SYSTEMS COURSE AS A CAPSTONE SOFTWARE ENGINEERING
EXPERIENCE

Scott Schneider, University of Dayton
Scott J. Schneider is an assistant professor of Electrical and Computer Engineering Technology at
the University of Dayton. He received his M.S. in Electrical Engineering from The Ohio State
University. His areas of interest include software development, embedded systems, and
automotive technologies.

© American Society for Engineering Education, 2008

P
age 13.1350.1

Using Programming Projects in an Operating Systems Course as

a Capstone Software Engineering Experience

Computer Engineering Technology students at the University of Dayton take two fundamental

programming courses teaching the basics of algorithmic problem solving along with the VBA

and C++ syntaxes. These courses develop a strong programming foundation for the students;

however, they lack the ability to introduce software programming within larger software

systems. The final course related to software development is a required operating systems

course. This course contains three fundamental goals: to develop the students’ understanding of

key operating system concepts, to increase the students’ software engineering capabilities, and to

introduce the students to the internal workings of the Linux and Windows operating systems.

The operating systems course relies heavily on software programming exercises as a key

instrument in teaching students the framework and applications of modern operating systems.

The unique aspect of this approach is that the programming projects are designed not as

standalone activities, but instead as individual components of a larger software system.

Therefore, each programming project focuses not just on learning new syntax related to

operating system concepts, but also in how these concepts are relevant to the software system

being developed. Students develop programs for both the Microsoft Windows and Linux

operating systems, working heavily with their associated application programming interfaces and

investigating processes, threads, synchronization, input and output, and scheduling issues.

A complete course overview and synopsis of the software programming projects will be

presented along with student performance and comments from an end of the semester survey.

Introduction

The Computer Engineering Technology (CET) Program at the University of Dayton (UD) was

started in 1999 and included two software programming courses. These courses predominately

focused on teaching the fundamentals of software programming and the syntax associated with

the VBA and C++ languages. Likewise, to satisfy the ABET outcome requirements for computer

engineering technology programs, the ETC Program at UD also required a new 3 credit lecture

course entitled “Concepts & Applications of Operating Systems” to be taken during the students’

Junior year of study.
1
 This course was structured to provide students hands-on exposure to the

internal workings of modern operating systems.

During the 2004/2005 academic year, the material being taught in the software programming was

evaluated. In accordance with the Computing Curricula 2001 (CC2001) report by the Computer

Society of the Institute for Electrical and Electronic Engineers (IEEE-CS) and the Association

for Computing Machinery (ACM), the two software programming courses being taught fell

within the traditional imperative-first approach. This approach starts students off with software

programming activities without any real preparations.
2
 After careful review, it was found that

the student population being served needed to be taught the algorithmic thought process prior to

the syntax as many of the students had no prior exposure to software programming and were

struggling more with defining the problem solutions than with the specific syntax being taught.
3

A modified algorithms-first approach from CC2001 report was applied to these courses. Instead

P
age 13.1350.2

of an introductory course solely working on developing algorithmic solutions divorced from a

specific language, the algorithmic development material was split between the two programming

classes, allowing the students to utilize their new skills immediately with respect to a specific

programming language.

The operating systems course, likewise, went through a transformation during the 2004/2005

academic year to establish it as a capstone experience related to software system development.

Originally, this course was only concerned with teaching the key concepts and technologies of

modern operating systems. This course contained a couple hands-on activities including

performing system benchmarking tests and experimentation with various system administrative

tools. These activities helped enhance the students’ understanding of the necessary operating

systems concepts; however it did not meet the new expectations of utilizing the course as a

software systems capstone experience. In support of this new position, it has been reported that

it is important to teach not just the concepts of operating systems but also the applications of the

concepts for engineering technology students.
4

Several key operating system concepts where selected to be used for programming projects in the

modified operating system course. These projects explore the use of processes, threads,

synchronization, scheduling, and input and output from within the user-space and

synchronization and scheduling from the kernel-space. Not only do these projects help students

develop advanced programming skills, they also demonstrate how these operating system

concepts are related to the formation of advanced software systems. The non-programming

projects were also expanded to complement the new software development tasks.

As the sophistications and requirements of the projects increased, the course was modified from

a 3 credit lecture to a 2 credit lecture and 1 credit lab format allowing 2 extra hours of course

time per week. This change was unanimously recommended by the students in an end of the

semester survey and provides more instructor time during the projects to guide students through

the programming process.

To support the operating systems course, a dedicated computer lab with dual-boot Windows and

Linux computers is used. In this lab, each student is assigned a workstation and is fully

responsible for all system maintenance. The students are given full access over modifying the

operating systems, and are solely responsible for loading the Linux distribution and performing

all necessary kernel modifications including recompilation and patching.

Operating System Course Format

The outline for the operating systems course is shown in Table 1. The lecture material follows

closely to the topics discussed in the course text book Operating Systems Internals and Design

Principles by William Stallings.
5
 However, the laboratory material has been developed utilizing

several external resources including some concepts from Kernel Projects for Linux and

Operating Systems Projects Using Windows NT by Gary Nutt.
6,7

 Note that each exercise

demonstrates an application of the current concepts being discussed during the lecture portion of

the class.

P
age 13.1350.3

The real uniqueness of this course is not in the use of software programs to demonstrate

operating system concepts, but in the deliberate sequencing of software development projects to

demonstrate how and why the operating system concepts are important to developing software

systems. The programming exercises in conjunction with the non-programming exercises

provide for the development of two distinct software systems that is carried throughout the

course as depicted in Figure 1. One system utilizes the Windows operating system while the

other system operates within a Linux environment. Two additional projects at the end of the

semester are not part of the two systems; however, they rely on many of the concepts developed

previously during the course.

Topic

LSN1 - OS Overview

LSN2 - Windows OS

LAB1 - Windows System Admin

LSN3 - Linux OS

LAB2 - Linux Install / Imaging

LAB3 - Linux Shell Scripting

LSN4 - Software Programming

LAB4 - Software Programming

LSN5 - Windows GUI Programming

LAB5 - Windows API / GUI Programming

LSN6 - Processes & Threads

LSN7 - Windows Processes & Threads

LAB6 - Adding Threads to Windows Apps

LSN8 - Process Synchronization / EXAM1

LSN9 - Semaphores
LSN10 \ LAB7 - Windows Concurrency Mechanisms

LSN11 - Software Programming in Linux

LAB8 - Linux Processes & Threads

LSN12 - Interprocess Communications

LSN13 - Linux Concurrency Mechanisms

LAB9 - IPC & Linux

LSN14 - Process Scheduling

LSN 15 - Real-Time OS

LAB 10 - Linux Scheduling

LSN16 - Linux Kernel Programming / EXAM2

LAB11 - Linux Modules

LSN17 - Operating System IO

LSN18 - Linux IO System Programming

LAB12 - RTAI and Signals

LSN19 - Memory Management

LAB13 - File System Benchmarking
LSN20 - Operating System Security

LAB14 - Linux Firewalls

LSN21 - Future and Network Based Oses
FINAL EXAM

Table 1: Operating systems course topic listing

Figure 1: Course projects used to develop Windows and Linux systems

P
age 13.1350.4

Student performance for this operating systems class is assessed using multiple methods. There

are fourteen projects ranging from working with built-in administrative operating system tools to

developing software programs using operating system concepts to operating system testing and

applications. Early projects focus on familiarizing student with key concepts such as processes,

threads, scheduling and abstraction. From this foundation, students hone their programming

skills through a variety of projects, each building on the previous projects while at the same time

addressing an individual operating system concept. Applications of many of the key concepts

are developed for both the Windows and Linux operating systems, highlighting their similarities

and differences. In addition to the homework assignments, there are two take-home midterm

exams and a final in-class exam.

Operating System Course Projects

As stated previously, the course projects fall into one of three categories. The first projects are

used to familiarize the student with the Microsoft Windows and Linux operating systems using

administrative tools, most notably to highlight key concepts. The next projects relate to the

development of software programs. These programs combine to form a Windows and a Linux

software system as shown in Figure 1. The final projects look at analysis and applications of

operating systems.

Operating System Administrative Projects

The first course project provides the students with an opportunity to work with the Windows

operating system using several administrative tools. Students start by investigating and editing

the Windows Registry using regedit.exe to perform some simple administrative tasks. Next, the

students must perform a series of tasks to monitor the system performance in relation to the

operating systems concepts of processes, threads, and objects. This series of tasks is based on

Exercise 1 contained in Nutt’s book.
6
 The students use the built-in Windows Task Manager,

taskmgr.exe, and Performance Monitor, perfmon.exe, utilities along with the Microsoft Visual

Studios SPY++ tool. After students are familiar with these tools, they run a synthetic computer

load application that automatically spawns a user specified number of threads for a user specified

amount of time. They are responsible for determining the actual number of threads running for

this application and its impact on the system performance using the previously investigated

utilities. Familiarity with these tools will also be used extensively throughout the semester to aid

the students in analyzing the programs they develop.

Since most of the students have had little to no exposure to Linux, the next two projects allow

the students to gain familiarity with installing and working within it. Linux was selected for

inclusion to this course because of its growing importance in the computing community and it

provides the students with an open source kernel that they can investigate from the inside, unlike

the Windows kernel. Furthermore, there are many free Linux distributions available along with a

very active support community on the Internet to encourage the students to work with it on their

own outside of class.
8, 9

During the second project, the students must install the Fedora Core (http://fedoraproject.org/)

distribution of Linux onto their assigned lab computer. Prior to installing the Linux distribution,

the students go through a short exercise related to imaging and resizing a hard drive partition.

P
age 13.1350.5

The third project utilizes the new Linux install to provide the students with an exposure to the

Linux operating system, predominately through shell scripting. A large amount of administrative

work in Linux is performed through shell scripting, therefore it is a very useful tool for students

to learn.
8
 During this exercise, the students start by exercising shell commands and working

with the /proc virtual file system to answer questions about their computer system similar to

Exercise 1 in Nutt’s book.
7
 The /proc virtual file system contains information about the

system resources, allowing the students to investigate the kernel state and current processes and

their associated properties. Leveraging from this work, the students develop simple BASH shell

scripts that can be used to automatically extract specified system information from /proc.

Windows Programming Projects

Students start their programming projects during the fourth course exercise with the development

of a simple application that helps them refresh their C++ syntax and programming skills while

introducing some advanced data structure concepts. The program that the students develop is a

simple contacts database manager that interfaces to a file containing the names and information

for their contacts. The application must be able to read, add, and delete contacts from the

database file. The deliverable for this project is not simply the program code, but also all

relevant design and analysis documentation. This exercise provides a starting point for the

remaining Windows programming exercises.

The fifth project entails modifying the program from exercise four to include a Windows

graphical user interface (GUI) for their developed contact database manager. This project, while

highly motivating for the students, also helps introduce them to working with the Windows

Win32 application programming interface (API) prior to dealing with processes and threads.

Students are already familiar with windows and their associated components, therefore the

creation of them is not as foreign as the creation of processes and threads might be.

Furthermore, in working with the Win32 API, students see firsthand how the concept of

abstraction applies to operating systems.

Students must learn how to utilize the Microsoft Developer Network (MSDN) library to

understand the implementation specifics for the necessary Win32 API functions found in the

windows.h header file. A short listing Win32 API functions used for this project and their

associated operation is shown in Table 2. A sample GUI developed by a student is depicted in

Figure 2. The students must submit their program, algorithms, and analysis. They are also

required to utilize the performance monitoring tools evaluated during the first exercise to

validate their window environment.

Win32 API function Description

WinMain(…) The user-provided entry point for a Windows-based application

CreateWindow(...) Creates an overlapped, pop-up, or child window

ShowWindow(…) Sets the specified window's show state

UpdateWindow(…) Updates the client area of the specified window

GetMessagae(…) Retrieves a message from the calling thread's message queue

WindowProc(…) Function that processes messages sent to a window

SendDlgItemMessage(...) Used to send messages to list boxes

MessageBox(…) Display a dialogue box with a brief application message

GetWindowText(…) Copies the text of the specified text box (window) into a buffer
Table 2: Win32 API subset for GUI class project

P
age 13.1350.6

Figure 2: Sample student contact manager GUI

The next project requires that the students add threads to their contact database manager

application so it can be operated in a shared environment where the database file is stored on a

network drive. It is common to develop multithreaded applications for such user interface

systems. Students must modify their application to include a separate thread for the “Add” and

“Delete” operations with the shared database file. Additionally, students must create a

“Refresh” thread to automatically synchronize the local copy of the database file and the file

itself since it can be simultaneously accessed by multiple users. Students are asked to validate

the program, namely the thread creation and destruction operations, and to document their

applications object hierarchy using the Windows tools evaluated during the first exercise.

Finally, students must evaluate the performance of their system and note if there are any issues

with thread sequencing and the shared database file or its local copy. This project helps students

visualize the operations of threads, along with when and why they are used in software systems.

The Win32 API functions utilized throughout this exercise are shown in Table 3.

Win32 API function Description

CreateThread(…) Creates a thread to execute for the calling process starting at the desired instruction

ExitThread(…) Ends the calling thread

Sleep(…) Suspends the execution of the current thread for a specified interval

CloseHandle(…) Closes an open object handle
Table 3: Win32 API subset for threads class project

Most students readily noticed that the threads can get out of sequence in the last project causing

unexpected data to be added or removed from the contacts database file and for inconsistencies

to exist between the database file and the locally maintained copy of database information. This

realization clearly demonstrates the need to add concurrency mechanisms to the application.

The seventh project therefore asks the students to protect the shared database file and the local

copy of the database file using semaphores, mutexes, or critical sections. The Win32 API

functions used for this task are located in Table 4. Furthermore, the design must preclude

deadlock or starvation from occurring. The students again need to analyze their application

using the system tools introduced during the first experiment. This exercise culminates the

Windows programming experience having stepped the students through the development of a

complicated software system.

P
age 13.1350.7

Win32 API function Description

WaitForSingleObject(…) Waits for the specified object to be in signaled state

GetLastError(…) Retrieves the calling thread's last-error code value set after wait or mutex creation

CreateMutex(…) Creates a mutex object for thread synchronization

ReleaseMutex(…) Releases ownership of a mutex object

CreateSemaphore(…) Creates a semaphore object for thread synchronization

ReleaseSemaphore(…) Releases ownership of a semaphore object

InitializeCriticalSection(…) Initializes a critical section object for thread synchronization

EnterCriticalSection(…) Waits for ownership of the specified critical section object

LeaveCriticalSection(…) Signals the release of the specified critical section object

DeleteCriticalSection(…) Releases all resources used by an unowned critical section object
Table 4: Win32 API subset for Windows concurrency class project

Linux Programming Projects

The remaining nine projects are with the Linux operating system. The eighth and ninth exercises

have the students develop programs within Linux containing multiple processes and threads and

utilizing process and thread synchronization methods including anonymous pipes for

interprocess communications (IPC). These activities are primarily programming exercises,

allowing the students to gain familiarity with the Linux software development environment,

while at the same time familiarizing them with the Linux system functions and the POSIX

pthread API. Functions used during these exercises are listed in Table 5 along with their

associated operation.

Linux System & pthread Functions Description

fork() System call to create a new process copied from parent process

wait() Allows parent process to wait for all children processes to terminate

waitpid(…) Allows parent process to wait for specified children processes to terminate

pthread_create(…) Creates a new thread to run in the address space of the calling thread

pthread_join(…) Allows parent thread to wait for a child thread to terminate for synchronization

pthread_exit(…) Called by child thread to terminate

pthread_mutex_init(…) Creates a mutex object for thread synchronization

pthread_mutex_destroy(…) Releases mutex object

pthread_mutex_lock(…) Waits for mutex object to be available then locks it else calling thread is blocked

pthread_mutex_trylock(…) Waits for mutex object to be available then locks it else returns without being blocked

pthread_mutex_unlock(…) Signals the release of ownership of the mutex object

pipe(…) Creates a pair of file descriptors pointing to an inode

read(…) Blocking read from the specified file descriptor (pipe)

write(…) Writes to file descriptor (pipe)

ioctl(…) Manipulates file descriptor to allow for non-blocking reads
Table 5: Linux system functions used for threads, processes and synchronization projects

Students are encouraged to find an editor within Linux for their software development activities

after being introduced to Emacs, VI, and gedit. Most students tend to gravitate towards gedit

because of its simplicity and resemblance to a Microsoft editor. The programs are compiled

from within the BASH shell using the GNU gcc and g++ compilers.

Projects ten through twelve are coordinated to develop a software system that sends a pulse

width modulated (PWM) signal out the parallel port of the computer to drive a fan in response to

a temperature reading using the serial port and a user input target temperature. Students must

take several steps during the formation of this project, many of which are based on a tutorial

provided for the Real Time Application Interface (RTAI) patch for the Linux kernel.
10

P
age 13.1350.8

First, in exercise ten, students investigate the Linux scheduler using a simple application written

during class to generate a waveform on a data output pin on the parallel port. Students must

analyze the generated signal using an oscilloscope under different system loads, determining the

time quantum and epoch for their Linux system’s scheduler. The next step requires students to

download a vanilla 2.6.15 kernel from http://kernel.org/ and compile and load it on their system.

This step is required to allow the students to work in kernel space through the development of

Linux modules.

Linux modules are applications that can be inserted into the kernel during run-time to extend its

functionality. The most common Linux modules are device drivers. It has been shown that

using Linux modules in an operating systems class provides the students an inside view of how

an operating system functions since they execute in kernel-space.
9
 During project eleven, after

Linux modules are introduced, the students modify their signal generating application to run as a

module and retest the system scheduling. Now, as the application runs in kernel-space, they can

document its impact on user space applications.

Finally, students patch their Linux systems with the RTAI kernel patch to turn them into real-

time (RT) operating systems. In class, students investigate the RTAI patch operations by

modifying their signal generating module to run under the RTAI patch and verify the ability of

the system to meet scheduling deadlines regardless of system load.

The twelfth project requires that the students integrate the disparate concepts from projects eight

through eleven along with course material on Linux input/output programming into a single

working software system. This system includes a user-space application that must read the

current temperature from the serial port using signals and calculate a PWM signal to drive the

fan to reach a target temperature. The calculated PWM signal is transmitted to the kernel-space

PWM generator module using IPC. This software system is very complex and highlights several

key operating system concepts such as processes, synchronization, input and output, and

scheduling. Furthermore, the sophistication of the software solution makes this truly a capstone

experience in software development.

Operating System Analysis and Application Projects

The remaining projects allow the students to work with the Windows and Linux operating

systems from an analysis and applications perspective. First, in project thirteen, the students are

responsible for comparing the Windows and Linux file systems. They must perform a

benchmark analysis of the system. The Sandra system diagnostic tool from SiSoftware is used to

benchmark the Windows file system and LmBench is used to benchmark the Linux file system.

The students are responsible for completing the tests, analyzing the results and making

performance comparisons.

The final project allows the student an opportunity to further develop their Linux administrative

skills in the development of a firewall system. The students use the Shorewall firewall tool to

setup the built-in Linux packet filter utility, Netfilter. They are required to research, install and

run the Shorewall tool using the original Fedora Core distribution on their lab computers. Their

setup must also provide an Internet Protocol (IP) filter along with Media Access Control (MAC)

P
age 13.1350.9

access verification. The final setup is tested by the instructor for correctness. The students are

responsible for submitting their design documentation along with a full description of how the

Shorewall tool is operating using the built-in Linux Netfilter and iptables utilities.

Student Perceptions and Impact on Learning

A student survey is routinely administered at the end of the course to evaluate course content and

effectiveness. Unanimously, students have valued the inclusion of both the Windows and Linux

operating systems and have found the software development projects both challenging and

enjoyable. However, students have historically less favorably commented on the level of

programming competency required and the initial Linux “shock” of working in a new operating

system environment.

Standalone software projects were added during the 2005 semester, with scheduling exercises

using the RTAI Linux patch introduced during the 2006 semester and Windows GUI

programming during the 2007 semester. Additionally, the concept of using software

programming projects that build upon each other in the formation of software systems was not

introduced until the 2007 semester. In reviewing the student feedback from the end of the

semester surveys, there was overwhelming support for learning about both the Windows and

Linux operating systems, with the lowest total during the 2006 semester of only 80% of the

students in support. Likewise, roughly 80% of the students favorably rated the course projects

and assignments as aiding in their understanding of the material. During the 2005 and 2006

semesters, the greatest area of dissatisfaction was with roughly 40% of the students responding

that they did not have sufficient software programming skills to complete the programming

assignments. During the 2007 survey, no students commented on insufficient software

programming skills.

Student performance can also be investigated to determine the impact of the course

modifications. The class averages for the 2005 through 2007 course offerings was a B (83%),

C+ (78%), and a B+ (88%), respectively. Looking at the spread of the final grades show a

standard deviation of 6%, 17%, and 4%, respectively for the 2005 through 2007 semesters. This

data indicates that student performance decreased as the level of difficulty increased with respect

to the programming projects. However, by synchronizing the projects together, and adding the

Windows GUI programming as an introduction to using APIs student performance not only

improved, but became more consistent.

Conclusions

Coordinating software programming projects in an operating systems course to provide a

capstone software development experience proved quite successful. This experience has evolved

over four years from a course with no programming exposure to one that engages students to

develop complex software systems applying key operating system concepts. Student feedback

from course surveys along with their course performance has helped to demonstrate the benefits

of synchronizing the course programming projects and the associated impact it has on student

learning.

P
age 13.1350.10

Bibliography

1. Criteria for Accrediting Technology Programs (2007-2008); ABET Technology Accrediting Commission,

ABET, Inc.

2. ACM/IEEE-Curriculum 2001 Task Force, Computing Curricula 2001, Computer Science, December 2001.

http://www.computer.org/education/cc2001/final/index.htm

3. Schneider, S., “Developing an Introductory Software Programming Course for Engineering Students”,

American Society of Engineering Education Annual Conference Proceedings, June 2005.

4. Loendorf, W., Brzoska, M., Koh, M., Rodriguez, E., “Implementing a Software Engineergin Technology

Program within the Context of Experienced-Based Learning”, American Society of Engineering Education

Annual Conference Proceedings, June 2004.

5. William Stallings, “Operating Systems: Internals and Design Principles”, Fifth Edition, Pearson Prentice Hall,

2005.

6. Gary Nutt, “Operating System Projects using Windows NT”, Addison Wesley, 1999.

7. Gary Nutt, “Kernel Projects for Linux”, Addison Wesley, 2001.

8. Eastman, E., “Exploring Linux as an Operating System in The CS Curriculum”, Journal of Computing Sciences

in Colleges, April 2006.

9. Bower, T., “Using Linux Kernel Modules for Operating Systems Class Projects”, American Society of

Engineering Education Annual Conference Proceedings, June 2006.

10. “RTAI: a Beginner's Guide”, Dipartimento di Ingegneria Aerospaziale - Politecnico di Milano,

https://www.rtai.org/.

P
age 13.1350.11

