
Paper ID #39074

Utilizing Online & Open-Source Machine Learning Toolkits to Leverage the
Future of Sustainable Engineering

Dr. Andrew Schulz, Georgia Institute of Technology

Andrew Schulz is a postdoctoral researcher at Max Planck Institute for Intelligent Systems in Stuttgart,
Germany. Andrew received his Ph.D. in Mechanical Engineering from Georgia Tech in August of 2022,
studying the bio-inspired design of elephant trunks and conservation technology. Andrew is a member
of the Engineering for One Planet (EOP) Network and is working to educate the next generation of
conservation technology practitioners.

Suzanne Stathatos, The California Institute of Technology

Suzanne’s drive to protect the natural world led her to graduate school at Caltech. She is a Computing
and Mathematical Sciences PhD student, advised by Pietro Perona. Her interests include leveraging
machine learning and computer vision techniques to enable large-scale biodiversity monitoring and solve
conservation-oriented issues. Suzanne holds an B.A. in History and an M.S. in Computer Science from
Stanford University. Prior to Caltech, Suzanne worked as a software engineer at Amazon and NASA’s
JPL. These experiences have sharpened her appreciation for interdisciplinary perspective and the real
world impact of precise computational techniques.

Cassandra Shriver, Georgia Institute of Technology

Cassie Shriver is a PhD student in Quantitative Biosciences in the College of Sciences at Georgia Institute
of Technology. Shriver earned a B.S.E. in Mechanical Engineering from Duke University, along with a
Minor in Biology and a Certificate in Marine Science Conservation and Leadership. She is intimately
familiar with the value of interdisciplinary education and is interested in how it can enhance the efficacy
of conservation initiatives and technology.

Roxanne Moore, Georgia Institute of Technology

Roxanne Moore is a Senior Research Engineer in the G.W. Woodruff School of Mechanical Engineer-
ing and the Center for Education Integrating Science, Mathematics, and Computing (CEISMC) at the
Georgia Institute of Technology. Her research focuses on design and engineering education with a focus
on promoting diversity and inclusion. She has served as PI and co-PI for grants from multiple spon-
sors including NSF and Amazon totaling more than $9M. In addition, her STEM outreach programs and
curricula have impacted hundreds of thousands of K-12 students nationwide. She is the cofounder and
director of Georgia Tech’s K-12 InVenture Prize, a statewide invention competition, open to all students
and teachers in Georgia. She earned her BS in Mechanical Engineering from the University of Illinois at
Urbana Champaign in 2007, and her Masters and PhD in Mechanical Engineering from Georgia Tech in
2009 and 2012. Dr. Moore received the Georgia Tech Teaching Effectiveness Award in 2018.

©American Society for Engineering Education, 2023



 

Utilizing Online & Open-Source Machine Learning Toolkits to Leverage the Future of 
Sustainable Engineering 

 
Abstract 

The United Nations Sustainable Development Goals (SDGs) have become a foundational metric 
for advancing engineering education in non-traditional ways, similar to the NSF’s Big 10 Ideas and 
the Grand Challenges. Recently, there has also been a national push to use machine learning (ML) 
and artificial intelligence (AI) to advance engineering techniques in all disciplines ranging from 
advanced fracture mechanics in materials science to soil and water quality testing in the civil and 
environmental engineering fields. Using AI, specifically machine learning, engineers can automate 
and decrease the processing or human labeling time while maintaining statistical repeatability via 
trained models and sensors. Edge Impulse has designed an open-source TinyML-enabled Arduino 
education tool kit for engineering disciplines. This paper discusses the various applications and 
approaches engineering educators have taken to utilize ML toolkits in the classroom. We provide 
in-depth implementation guides and associated learning outcomes focused on the Environmental 
Engineering Classroom. We discuss five specific examples of four standard Environmental 
Engineering courses for freshman and junior-level engineering. There are currently few programs 
in the nation that utilize machine learning toolkits to prepare the next generation of ML & AI-
educated engineers for industry and academic careers. This paper will guide educators to design 
and implement ML/AI into engineering curricula (without a specific AI or ML focus within the 
course) using simple, cheap, and open-source tools and technological aid from an online platform 
in collaboration with Edge Impulse. Specific examples include 1) facial recognition technologies 
and the biases involved, 2) air quality detection using an accelerometer, 3) roadside litter detector, 
4) automated bird identifier, and 5) wildlife camera trap detection. 

Introduction 

In 2015, while seeking to create a global development framework, the United Nations (UN) 
formulated the seventeen interrelated UN Sustainability Development Goals (SDGs). The SDGs 
include fighting poverty and hunger, and promoting health, quality education, gender equality, 
clean water and sanitation, affordable and clean energy, economic growth, infrastructure, and 
innovation in the industry, reduced inequalities, sustainable communities, responsible 
consumption, climate action, marine and terrestrial life, peaceful, strong, and just institutions, 
and global partnerships to meet the goals. [1]. The SDGs emphasize interconnected 
socioeconomic, environmental, and political aspects of sustainable development and encourage 
collaboration and partnership between groups working toward their defined goals. The SDGs 
specifically emphasize how civil and environmental engineering are crucial to meet their goals, 
and it has become increasingly apparent [2] that artificial intelligence (AI) has become a key 
component to these reach goals. We first outline how we suggest civil and environmental 
engineering curricula should be (re)formulated to meet the SDGs and then spend the majority of 
the paper discussing AI’s impact both within and outside of these engineering disciplines to meet 
the SDGs. 

 



 

Engineering Education to work toward the SDGs 
 

Civil Engineering Curriculum 
 

Both Civil and Environmental Engineering have direct connections to the SDGs in their future 
curriculum outlines. To meet the 2030 Agenda outlined by the SDGs for emerging civil 
engineers, the college curriculum will need to prepare graduates to apply knowledge of 
mathematics through differential equations, calculus-based physics, chemistry, and at least one 
additional area of basic science. Students will need to know how to: 

1. apply probability and statistics to address uncertainty; 

2. analyze and solve problems in at least four technical areas appropriate to civil engineering; 

3. conduct experiments in at least two technical areas of civil engineering and analyze and 
interpret the resulting data; 

4. design a system, component, or process in at least two civil engineering contexts; 

5. include principles of sustainability in design; 

6. explain basic concepts in project management, business, public policy, and leadership; 

7. analyze issues in professional ethics; 

8. and explain the importance of professional licensure. 

In this paper, we discuss several connections, not just with these SDG connections and Civil 
Engineering. Still, we especially believe that the case studies of edge computing and machine 
learning give direct connections to applying probability, analyzing and solving problems, 
conducting experiments, and designing a process in civil engineering contexts, all discussed 
above. 

Environmental Engineering Curriculum 

For emerging environmental engineers to meet the SDGs, students will need to: 

1. Have hands-on laboratory experiments; 

2. Analyze and interpret data from their experiments in more than one central 
environmental engineering focus area, e.g., air, water, land, and environmental 
health. 

3. Design at least one environmental engineering system that includes 
considerations of risk, uncertainty, sustainability, life-cycle principles, and 
environmental impacts 

These direct connections of environmental engineering influence of the SDGs directly coincide 
with the civil engineering outcomes listed in the previous section. In the case studies, we discuss 
several examples of hands-on laboratory experiments that allow students to use novel techniques 
to understand and interpret data from environmental engineering systems. 
 



 

Artificial Intelligence’s influence in engineering 

The internet revolutionized the amount of data accessible to all (Big Data). Applications and 
websites like Reddit, Twitter, Wikipedia, iNaturalist, and Merlin Bird ID show the rise and 
regularity of crowdsourced data. The rise of public-accessible machine-learning-based products 
like ChatGPT, Dall-e, and iPhone-unlocking facial recognition illustrate the emergence of 
artificial intelligence (AI) across vast public sectors. AI is predicted to affect global productivity 
[3], to promote/expose problems in diversity, equity, and inclusion [4], to impact conservation 
and biodiversity monitoring [5], and to increase the ability to do climate monitoring and 
forecasting [2]. The 2020 Nature Communication study [2] suggests that AI will influence the 
ability to meet all 17 Sustainability Development Goals (SDGs) set out in their 2030 Agenda [6]. 
Vinuesa, et. al. illustrate and discuss how AI can enable or inhibit the 2030 Agenda for the United 
Nation’s SDGs [2]. 

Academia and industry alike will likely incorporate aspects of AI into existing engineering 
processes. It is critical to know the benefits and detriments of AI as those processes get 
modified. Academia will, thus, need to incorporate aspects of machine learning and/or data 
science into its curriculum pipelines to train the next generation of engineers. 

What is Machine Learning (and Artificial Intelligence)? 

Let’s take a step back and precisely define these fields. Artificial Intelligence is the broad field in 
which machines are developed to mimic (and exceed) human capabilities. AI encapsulates every 
aspect of human intelligence so that machines can simulate humans without human interference 
[7]. Machine learning is a subcategory of artificial intelligence that provides the tools necessary 
for machines to exhibit human capabilities. These tools include deep learning and neural 
networks, computer vision, and natural language processing. Machine learning is used in the real 
world to recognize and categorize emails as spam, translate speech to text, and classify images 
(i.e., dog images vs. cat images). 

By studying and experimenting with machine learning, programmers test the limits of how much 
a computer system can improve perception, cognition, and performance on a given set of tasks. 
They do this through algorithm development and data collection [8]. 
 
Why is Machine Learning Important in Education? 

Machine learning has applications beyond the realm of engineering, as several disciplines, 
including computer science [9, 10, 11, 12], physics [13], medicine [14], biology and ecology 
[15], and public policy [16] have all grown in computational techniques by utilizing machine 
learning for various tools. As applications in these fields expand, so does the need for developing 
the next generation of machine learning-conscious students at the undergraduate level. There are 
now several online teaching modules working on machine learning in education. Free, general, 
machine learning and statistics classes are provided online by Coursera, Udacity, Khan  
Academy, and more [17, 18, 19]. Cloud Providers like Amazon AWS, Google GCP, and 
Microsoft Azure provide free online tutorials with systematic guides on how to plug into and use 
their machine learning services [20, 21, 22]. These online services are growing partly because 
they are trying to reduce the gap between those who know machine learning technologies and 



 

those who use machine learning libraries. 

Machine learning’s reach has expanded to many application areas, as enumerated above. 
However, this expanded reach increases demand for machine learning education, particularly for 
those who do not come from a computer science or statistics-heavy background. While machine 
learning is still a growing research area, there is limited consensus on teaching it to 
interdisciplinary or non-computer science audiences. 
 
However, Machine Learning Engineering is cited as the fourth largest growing field in the job 
market [23]. Machine Learning Engineering is needed for various fields, yet there is a bottleneck 
in how many people are learning machine learning in higher education settings. Moreover, 
applying machine learning often requires subject matter experts in those fields to determine if the 
method or system is generating accurate predictions. For example, machine learning on medical 
MRI imagery may require MRI experts to label parts of those images so the machine-learning 
model can learn correctly. 

Today, there is a lot of over the wall machine learning where subject matter experts throw their 
data to machine learning experts who know little to nothing about the subject [24]. They create a 
model that they think works well and throw it back “over the wall” to the subject matter experts. 
This process can be repeated many times and often results in frustration from both sides. 
Machine Learning Engineers coming out of engineering programs are in short supply and often 
less than what is needed by many companies. Instead, people must be familiar with machine 
learning to set it up and use existing ML tools on their data. With the expanded use of machine 
learning, educators need to work to find new and innovative ways to teach machine learning to 
undergraduate engineers [25]. One such way would be via a case study. 

Educators could, for example, teach a class on how to apply machine learning by leveraging 
conservation tools. In it, they could have students simultaneously implement Edge Impulse 
devices, learn about the role of sustainability goals in engineering, and learn how to apply 
machine learning to a specific domain. 

Prior work has considered the challenges of teaching machine learning courses to cross-
disciplinary audiences such as non-CS undergraduates [26], business students [27], artists [28], 
materials scientists [29], biologists [30], and graduate ecologists [12]. One of the chief 
challenges with non-CS undergraduate students is that they lack a background in advanced 
programming for machine learning projects. This is especially the case for some fields in the 
biological sciences. However, many data collection techniques in fields like ecology rely on long 
field observation records or data analysis in behavioral ecology. These fields would greatly 
benefit from computer science techniques such as machine learning, algorithms, computer 
vision, and artificial intelligence to allow large data sets to be analyzed in minutes compared to 
weeks. 
 
How does Machine Learning Work, Broadly? 

Broadly, machine learning works by taking in some data, feeding the data through an algorithm, 
and having the algorithm predict things about the data. The data is typically split into some data 



 

to train the machine learning model and separated data to validate that the model works as 
expected. The data can be labeled or unlabeled. In labeled scenarios, labels could be like a box 
around something in an image, as shown in the example in Figure 2, a ”SPAM” or ”NOT 
SPAM” text categorization, and many more. The algorithm learns by penalizing wrong guesses 
and encouraging correct guesses iteratively over the data. In the unlabeled scenario, the algorithm 
learns innate patterns in the data, such as clustering patterns that might be difficult to recognize 
for high-dimensional data. Currently, there are many novel ways that machine learning is learned 
in and outside of the classroom. 
 
How do People Learn Machine Learning Today? 

The primary modes of delivery of machine learning education are: 

1. In college settings, 

2. using MOOCs (i.e., Coursera, Khan Academy, Udacity), 

3. or using “edge” devices. 

Each of these modes of delivery has unique advantages and disadvantages. Items like MOOCs 
allow the masses to access information but have challenges with techniques like one-on-one 
assistance and active learning environments. Therefore, in this manuscript, we will focus on the 
ability to use “edge” devices in college setting classrooms as an educational tool. 
 
Edge Impulse 

What are “Edge” Devices? 

Edge devices are things we know and love - phones, tablets, laptops, and personal computers. 
They are meant to distinguish from non-edge devices in a server room or on cloud computers. 
Much of machine learning today runs on non-edge devices because they have more relaxed 
storage and computational limits. However, they contribute to the limited accessibility problem 
of machine learning. Fortunately, edge devices are becoming increasingly common to run 
machine learning models directly. There are a few different edge devices that can be used as 
educational tools, including items like EdgeImpulse, Google Coral, or Edge boards from 
Arduino. We will focus this manuscript on the EdgeImpulse platform for educational purposes, 
but readers should be aware of other potential devices to use in their classrooms. 
 
Intro to EdgeImpulse 

EdgeImpulse [31] is a development platform for machine learning on edge. EdgeImpulse is 
working to take the complicated portions of a computer science (CS) idea and make it digestible 
to non-CS audiences through a simple online web interface. 
 
Using Edge Impulse to Connect with SDGs 

In 2015, the United Nations proposed 17 Sustainable Development Goals (SDGs) to address 
environmental, political, and economic challenges on a global scale [32]. Each goal highlights a 



 

broad challenge to sustainability broken down into specific targets designed to draw attention to 
and proactively pursue solutions. In recent years, the United Nations has worked to develop 
pedagogical resources associated with the SDGs to make them more accessible to academia.  

These resources include teaching guides, learning outcomes, and evaluative assessments [33]. In 
addition to teaching resources, the SDGs rely on innovative solutions from engineers and 
effective education practices to train the next generation of sustainability-minded communities 
[34]. 

Figure 1. What is an edge device? Connections of Networks to the intermediate step of edge 
devices that then run to local area networks, or LANs. Silhouettes and drawings used from 
Undraw.co. Edge device images taken from open source image databases.  

The cross between new and advancing technologies of both hardware and software with fields like 
ecology has become known as conservation technology (CT) or Tech4Wildlife [35]. Much like 
the computational science of AI4Good, the goal of CT is to apply these techniques to 
humanitarian solutions and conservation [36]. The field of conservation technology does not 



 

currently have a curriculum framework in any of the fields of engineering, computer science, or 
biology. Still, we have been working to develop some foundational frameworks, including 
learning objectives [37] and thematic elements of the course that make it successful [38]. 

Edge Impulse, in its framework of being a learning and teaching tool in the field of computer 
vision and machine learning, has several case studies that have been implemented in classrooms. 
We highlight a few of these case studies, specifically focused on introducing the EdgeImpulse 
tool-kits in an Environmental Engineering classroom. 

Educators can sign up for ten free kits for Edge Impulse’s educator program to provide edge 
devices in engineering classrooms. This could in turn help connect specific ideas of advanced 
computing techniques to engineering education and other fields such as environmental or bio-
systems engineering. 
 
Results - Engineering Education Projects for the Classroom 

We will discuss four case studies to bring into the classroom for various engineering disciplines 
and items in the environmental and sustainability engineering space. Each case study has online 
how-to guides, linked throughout this paper, and could be utilized in environmental or 
sustainability engineering curricula, classrooms, or laboratory teaching settings. Each case study 
targets specific ABET criteria for environmental engineering programs [39]. Many of these 
projects would require purchasing some hardware components for a lab setting, and we will 
discuss each of those in the respective sections as well as successful applications and real-world 
examples that have utilized these types of techniques. 
 
Air Quality Detection Using Accelerometer 

Currently, air quality is a good marker of engineering for sustainable development given the 
direct connections with climate change, climate action, and data analysis [40]. An advantage of 
air quality is that data acquisition and estimations of air quality can be obtained with simple 
sensors and readings. A development board and a three-axis accelerometer can be combined with 
Edge Impulse studio to detect different types of air quality [41]. As with each of the case studies 
we discuss here, the advantage of this device is the training data can be collected relatively 
simply with an air purifier in a laboratory setting. A labeled training data set is required for all 
computer vision projects discussed in this paper. The classification for this air quality detection 
project is tested through four different conditions: clean air, slightly polluted, highly polluted, 
and controlled. There are air purifiers in many classrooms now due to COVID-19 protection at 
universities, and they are a widely accessible way to generate a training set. 

Limitations & Opportunities: Overall, this is the most accessible case study we will discuss as 
there are no student limitations regarding access/security/etc. Additionally, this project provides 
opportunities to access and include additional data, such as looking at the air in different 
buildings across campus. This could allow students to create a data set for tracking differences in 
air quality between different air filtration systems through the centuries, since campuses often 
have buildings predating modern filtration systems. 
 



 

Roadside Litter Detector 

Another application in an environmental engineering classroom is non-sustainability with current 
waste treatment plans. Littering is a significant issue that introduces the human element directly 
into the human-caused environmental challenges and has connections with the sustainable 
development goals regarding SDG 6 of sanitation. Over 11 billion dollars in the United States is 
spent yearly to clean up litter. A significant challenge with litter on places like highways is the 
inability to assess where the litter is located. Nathaniel Felleke has worked on solving this using 
an edge device and the edge impulse online tools through a roadside liter detector [42]. 

By combining a raspberry pi four board, a wireless notecard, and a computer webcam while 
driving along the highway, he generated a training data set to identify locations where liter is 
present on the side of the highway as a coin flip distinction of trash versus no-trash. Using the 
Edge Impulse Studio, further analysis could be completed, and the image accuracy for this data 
set had almost a 90% accuracy rate. 

Limitations & Opportunities: Overall, the hardware components of this exercise are cheap and 
often already in engineering classrooms with items like raspberry pi boards interfacing with many 
different types of laboratory experiments in modern engineering education, but this specific 
project requires cars. 
 
Alternatively, the same methods could be performed with a system mounted onto a bike or even 
on the backpack of a student walking on campus to look at trash and litter on the side of the road 
or sidewalk. This requires some basic knowledge of coding and interfacing between some devices 
and would be a more rigorous exercise, but it has many engineering connections. 
 
Automated Bird Identifier 

The third case study focuses on combining edge devices with allowing students to understand the 
field of community science, which is an ever-increasing field for large data collection [43]. For 
years, birders and wildlife experts have used bird books and field guides to identify birds from 
afar. Merlin Bird ID is an application designed to eliminate the need for expertise and expand 
birding to all levels of bird watchers. Understanding that birding may be inherently remote, the 
Merlin application downloads the machine learning models and data required onto any iOS or 
Android device. It then can run entirely on users’ mobile devices without an internet connection. 
As described above, this makes Merlin Bird ID an example of an edge application. 

Merlin identifies birds by asking users for photos of birds and audio from birds’ calls, as well as 
the time and location. Its machine-learning model combines the birding community’s 800 
million sightings on eBird with annotations from experts at Cornell’s Lab of Ornithology. This 
model is distilled into something small enough to fit onto a mobile device with minimal space to 
reach the mass public. Items like eBird have become a successful example of community-driven 
scientific data collection [44]. For those who want to work on interfacing their hardware setup, 
there are ways to do this using either the Lacuna space and things network or a more open-source 
toolkit such as the AudioMoth that allows for the classification of bird species using sound [45]. 
There are online tutorials that take you through constructing your device to determine accuracy 



 

for distinguishing between different bird species, such as a house sparrow and parakeet, where 
they give the example of an accuracy of 91 %, with a 9 % of incorrect species differentiation. 
Following the build guide, students would be able to interface and learn about more than just the 
ability of edge devices to use images but also data in the form of sounds. 

Limitations & Opportunities: This project also shows students the broader connection to current 
data and programs, with items like Merlin application, iNaturalist, and eBird having data that is 
purely driven by community scientists’ involvement in the collection of data sets. Additionally, 
when training data sets for this, there is a wide range of open-source data sets and sounds of pre-
identified birds in various regions of the globe. Students can also put one of these devices outside 
their dorm window to see which bird species are around campus. 

 

 
Figure 2: Example of machine learning training set imposed on differentiation between fox and 
not fox. 
 
Wildlife Camera Trap Detection 

Finally, the fourth iteration would be an example project that is related to the use of camera trap 
data to distinguish between specific species. This idea is well known in the field of conservation 
technology, discussed in the introduction in different ways. This includes using computer vision 
to identify between, say, a fox versus not a fox, or even can get down to the identification of 
specific fox individuals (Figure 2). Different wildlife cameras are currently being developed that 
specify target species, and there are many use cases in literature utilizing edge devices. We will 



 

give one example here with that of EleTect [46]. This technique and application can be applied 
to other camera-collected data, and identification between, say, fox versus not a fox or elephant 
versus not an elephant can be a simple task. There are specific animals around campuses or 
student dorms that would provide plentiful opportunities to explore this case study as a laboratory 
project. 

Limitations & Opportunities: The primary challenge or limitation of this case study is security 
when looking at including camera trap information that could be taken around campus. 
Additionally, many cameras that are placed around campus will need to have tags on them for 
security reasons. Therefore, before implementing any data collection on or around campus, it is 
recommended to check with your research ethics departments and campus police and 
groundskeepers to get the best amount of data. Additionally, this allows students to begin with a 
simple fox versus not-fox idea and expand to individual species identification using the Edge 
Impulse online tools. 
 
Discussion 

Connections between Machine Learning and ABET Outcomes 

These case studies and Machine learning align directly with several ABET outcomes. Primarily 
when we view the Environmental Engineering ABET outcomes, we will discuss each outcome 
and the relevance to Machine Learning and how they are connected through the case studies 
discussed in the previous section: 

• ABET Outcome: Mathematics through differential equations, probability and statistics, 
Calculus-based physics, chemistry (including stoichiometry, equilibrium, and kinetics), earth 
science, biological science, and fluid mechanics [10]. 
Relevance to Machine Learning: ML as a field utilizes advanced techniques of statistics and 
mathematics that are novel and new computing techniques, as discussed in the introduction. 

• ABET Outcome: Material and energy balances; fate and transport of substances in and 
between air, water, and soil phases; and advanced principles and practices relevant to the 
program objectives [10]. 

 Relevance to Machine Learning: Discussed in the case studies above are direct links 
towards using these case studies to view and understand items about the air, soil, and other 
environmental factors. 

• ABET Outcome: Hands-on laboratory experiments, analysis, and interpretation of the 
resulting data in more than one central environmental engineering focus area, e.g., air, 
water, land, and environmental health [10]. 
Relevance to Machine Learning: Each case study gives an example case for students to 
utilize a device like the Edge Impulse board to generate a laboratory experiment that allows 
actual testing of an analysis method in real-time. 

• ABET Outcome: Design of environmental engineering systems considering risk, 
uncertainty, sustainability, life-cycle principles, and environmental impacts [10].  



 

Relevance to Machine Learning: Machine Learning has risks, biases, and other challenges 
to overcome with these different types of problems and solutions, which are suitable to teach 
students before they are in the workforce. 

Challenges in Educating ML to Non-Computer Scientists 

Teaching machine learning to an interdisciplinary, non-computer science crowd has its challenges. 
There is existing literature about teaching machine learning, deep learning, or computer vision to 
those with a background in computer science or a related discipline [47, 48, 49]. And other 
works concentrate on teaching machine learning to non-computer scientists, including 
undergraduates [26], business majors [27], artists [28], material science engineers [29], biologists 
[30], and ecologists [50]. 

However, common challenges faced when teaching machine learning to groups of non-computer 
science students included the following: 

1. Designing sufficient coding structure and guidelines. Computer science students tend to 
have personal preferences in their setups; some might prefer coding on sublime and 
running their code via the command line, while others might prefer coding in what’s 
known as an integrated development environment (IDE). This difference is akin to, 
though it has more variance than, using Microsoft Word versus text editing on a PC. 
Because of computer scientists’ different personal preferences, it is not standard for these 
types of setup details to be included or required in machine learning classes. Non-
computer scientists, however, may need more structure to ensure that they can collaborate 
on solving common coding problems and streamline the learning process. 

2. Removing ambiguity from infrastructure and process recommendations for machine 
learning work. If a class is structured to run on a virtual machine (VM), for example, 
someone could get their code on their VM in several ways. They could write code locally 
and copy it directly to their VM using rsync or swp.        Alternatively, they could write code 
locally, push their code to a GitHub (or comparable) repository, and then have their VM 
pull code from the remote repository. Computer science students may have a preferred 
workflow, but non-computer science students may benefit from more than a single 
structured recommendation. 

3. Avoiding wrappers to existing machine learning libraries. Wrappers are designed to 
make their underlying libraries more accessible or digestible. However, some have found 
that using them in an educational setting makes them difficult to inspect or debug when 
faced with a challenge. They hide a lot of complexity, which seems wonderful in practice, 
but makes learning about what is going on under the hood much more difficult [50]. 

4. Access to more powerful devices. Computer science students may have access to more 
powerful machines, such as a school’s GPU-computing cluster. Non-computer science 
students or people outside academia trying to learn machine learning independently may 
not have such access. Cloud services like Microsoft’s Azure and Amazon’s AWS 
frequently provide free computing credits for educational purposes, though those credits 
may only extend to lower-power (less costly) devices. As a result, required access to more 



 

powerful devices may financially limit the public from being able to run on powerful 
infrastructure [50]. 

Distilling structure and standardizing processes streamline workflows and give a joint base for 
non-computer-science students and the public to launch. With these, defined, machine learning 
education becomes more standardized and digestible to anyone attempting to learn. 
 

Identifying bias in computer vision models 

In machine learning, bias indicates the difference between an ML model’s average prediction and 
the correct value. High bias in a machine learning model indicates oversimplification, whereas 
low bias indicates that a machine learning model might be too specifically fit on the training 
data. For this paper, however, we define bias as the human bias that goes into producing a 
machine learning system. Bias can be introduced to a system in several forms. It can be encoded 
in the training system by the data fed into training (selection bias): for example, if only 
mugshots are used to train a face recognition system, the machine learning model, biases 
toward populations that are more often incarcerated.  

Alternatively, bias can be introduced in the algorithm itself. Continuing with the mugshot 
example, this could happen if the person labeling the photos adds their stereotypes to the labels. 
Ongoing research is trying to point out and mitigate these innate biases in facial recognition. 
Recent works, for example, have successfully predicted the performance of face-identification 
models without labeled data, removing the bias introduced from labeling and allowing face-
recognition software to test their models’ biases [51, 52]. 
 
Future Work 

In the future, we are going to perform a more formalized understanding of the types of content 
and identities that are gained when engineering students use edge devices in the classroom. 
Machine learning and computer vision are becoming more applicable to all types of engineering 
careers in both industry and academia. It should be a priority in the coming years to educate 
undergraduate students to use these techniques and tools. In the future, we will also look at 
utilizing edge devices outside of just the field of environmental engineering and determine the 
impact these lessons can have on the engineering curriculum to help educate the next generation 
of computer vision-minded engineers using edge devices. 
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