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Abstract:

The spreadsheet solver method has proven very successful as students at both upper and lower
division are experiencing meaningful single-criterion optimization in addition to finding
optimization applications in their other coursework. This paper will describe optimization
implementation and present some sample optimization results at both levels using spreadsheet
solver method to drive subsequent solid modeling and finite element analysis (FEA).

Introduction:

The author previously described in the ASEE 2002 Conference Proceedings the introduction of a
suite of four optimization techniques into mechanics classes. The spreadsheet solver method has
proven very successful as students at both upper and lower division are experiencing meaningful

single-criterion optimization and also finding optimization applications in their other courses.

In the lower division mechanics class, a simply supported, rectangular cross-section beam with a
central load was first introduced and solved using conventional analysis methods. After the
students explore and understand the varying stress profile in the beam, the concept of the
optimization objective function is introduced. In this beam, the objective is to produce a constant
stress state on the highest stressed portions of the part. A spreadsheet solver is used to meet this
objective subject to constraints for beam base and width in two modes. The first mode is a
constant height beam with a varying base and the second is a constant base beam with a varying
height. The students utilize the results of the spreadsheet solver for both beams to produce solid
models which can be readily visualized.

In the upper division mechanics class, the students initially perform the same steps as the lower
division class as a refresher. Additionally, they explore the beam shapes required for different
loadings, highlighting the effect load has on the stress state within the part and required beam
geometry. Subsequently, these students utilize their configure solid models for the loading cases
to prepare FEA models of four basic beam types. The FEA stress states are compared with the
theoretical stress states for these configurations in report and class presentations.

This paper describes the optimization introduction and presents some sample optimization results
at both levels using spreadsheet solver to drive subsequent solid modeling and finite element
analysis (FEA).

Analysis of Simply Supported Beam with Central Load:

In a simply supported beam with a central load, P, (see Figure 1) the reaction forces can be
determined using a free body diagram (FBD) and freshman-level Statics to be of equal magnitude
(e.g. P/2) and direction (opposite of P). This elementary analysis can be utilized and extended to
produce the Loading, Shear and Moment diagrams shown below in Figure 2. Of interest is the
Moment Diagram for this loading case which, due to the “tent” shape, produces a “tent” shape
stress curve shown in Figure 4 for constant cross-section beam constructions shown in Figure 3.
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Figure 1: Simply supported beam with central load
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Figure 2: Free Body, Loading, Shear, and Moment diagrams for simply supported beam
with central load

For a constant cross-section rectangular prismatic beam, the section modulus, Z(x), is constant
along x leading to a constant flexural stress on the top surface with b(x) representing the width of

the beam at any location, x and h(x) representing the height of the beam at any location, x, as
shown below in Figure 3.

b(x)
Figure 3: Rectangular cross-section of beams in this paper

For a rectangular cross-section beam, the equation for the maximum flexural stress, S(x), which is
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found on the bottom surface, is shown in Eq 1 below'~.

S(x) = 6 * M(x) / (b(x) * h(x)?) Eq 1

A non-optimal solution through use of standard cross-section materials which are readily
available, including rectangular cross-section beams, [-Beams, hollow-square beams, etc. The

constant Z(x) along the x dimension leads to a S(x) profile that mirrors M(x) with a maximum
value at midspan as shown in Figure 4 below.

Smax= 3PL/2b(X)h(X)2

Surface Flexural Stress, S(x)

0 ]

Figure 4: Simply supported beam with a surface flexural Z(x) bending stress, S(x),
that mirrors M(x) for a constant cross-section beam.

Constant Surface Flexural Stress as Optimization Goal:

More efficient utilization of the material (not necessary the optimum) to produce a given
maximum surface stress requires some changes in the beam cross-section along the x axis. stis
clear from the above discussion that a constant-stress beam will have flexural bending stress graph
that is a horizontal line as shown in Figure 5 below.

Surface Flexural Stress, S(x)
Smax= Smax from Figure 3

0 |

Figure 5: Simply supported beam with a constant surface flexural bending stress, S (x).
Beam cross-section varies along x.

As shown previously?, this goal produces a beam where more of the beam material is efficiently
utilized and thus contributes more than the rectangular prismatic shape beam.

Beam Geometries to Achieve Constant Surface Flexural Stress:

Students were asked to take the basic rectangular prismatic beam geometry and develop the
surface flexural stress magnitude for a given loading. These rectangular prismatic cross-sections
essentially had a constant b(x) with h(x) constant along x but set to some value using Microsoft
Excel™ Solver™ 3, Similarly, a constant h(x) with b(x) constant along x but set to some value
using Solver™ was also accomplished. The family of geometries that were explored by the
students also included varying b(x) along x while holding h(x) constant and varying h(x) along x
while holding b(x) constant. Subsequent to that “baseline” analysis activity, maximum surface
flexural stress level goals were developed. Several groups had stress level goals of 1000 psi, 2000
psi, and 5000 psi, while other groups had 3750 psi, 5000 psi, and 8000 psi. Each of these stress

levels (e.g. five) and approaches (e.g. four) generated twenty potential solutions that are described
below.
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Rectangular Prismatic Cross-Section: First Approach

First, for a rectangular prismatic beam, the required base dimension was determined using Excel
Solver™ producing these stress levels while holding the height constant at 3.0”. These
dimensions were input into parametric solid models allowing the resulting beam volumes to be
determined. The general shapes of the resulting solid models for this case are shown pictorially

below in Figure 6 and a chart depicting the volume change as a function of stress level is shown in
Figure 8.

Figure 6: Rectangular Prismatic Beams to Achieve Goal Flexural Stress — Vary b(x) w/
h(x) = 3”. Maximum flexural stress is obtained at midspan (range: 1 kpsi to 8 kpsi, 1 to r)

Second, again for a rectangular prismatic beam, the height was determined using Excel Solver™
to produce these same stress levels while holding the base constant at 1.0”. These dimensions
were input into parametric solid models and the volumes to be determined. The general shapes
of the resulting solid models for this case are shown pictorially below in Figure 7 and a chart
depicting the volume change as a function of stress level is shown in Figure 8.

Figure 7: Rectangular Prismatic Beams to Achieve Goal Flexural Stress — Vary h(x) w/
b(x) =1”. Maximum flexural stress is obtained at midspan (range: 1 kpsi to 8 kpsi, 1 to r)
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Rectangular, Vary Base Rectangular, Vary Height

Figure 8: Results of Utilizing Solver™ on Two Rectangular Prism Cross-Section Beam
Families. Note that the cross-over occurs at the baseline stress level of 5 kpsi.

Rectangular Prismatic Cross-Section: Second Approach

Next, the rectangular beam was subdivided into equal elements for which the flexural stress could
be obtained using Equation 1 above. First, the height, h(x), was held constant along x equal to
3”, while the base, b(x) was varied for each element to produce the desired stress utilizing Solver
™  The resulting dimensions were exported to a solid model, which enabled the volume to be
determined. The general shapes of the resulting solid models for this case are shown pictorially
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below in Figure 9 and a chart depicting the volume change as a function of stress level is shown in

Figure 11.

Figure 9: Rectangular Beams to Achieve Goal Flexural Stress — Vary b(x) w/ h(x) = 3”.
Maximum flexural stress is obtained along top surface (range: 1 kpsi to 8 kpsi, 1 to r)

Second, the base, b(x), was held constant along x equal to 17, while the height, h(x), was varied
for each element to produce the desired stress utilizing Solver™. The general shapes of the

resulting solid models for this case are shown pictorially below in Figure 10 and a chart depicting
the volume change as a function of stress level is shown in Figure 11.

Figure 10: Rectangular Beams to Achieve Goal Flexural Stress — Vary h(x) w/ b(x) =1".
Maximum flexural stress is obtained along top surface (range: 1 kpsi to 8 kpsi, 1 to r)
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Figure 11: Results of Utilizing Solver™ on Two Rectangular Cross-Section Beam Families.

Again, note the cross-over just less than 3 kpsi.

Spreadsheet Solver Software Utilized:

The spreadsheet solver method is becoming widely known and popular among Purdue University
undergraduate students. For this paper, the Microsoft Excel™ add-in package Solver™ is
utilized, although other packages are readily available, including MATLAB™, MathCAD™,

Mathematica™, Maple™, etc. The solution for the initial (b(x) = 1” and h(x) = 3”’) beam is
shown below in Figure 12.
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J File Edit “iew Inzert Faormat Tool: Data Window Help = =] =]
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Simply Supported Beam

Central Load, P 1000 #
Support Reactions, A & C s00 #
Bearn Height 3in
Bearn YWidth 1lin
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Beam Section Modulus, £ 1.5 in"3
Bearn Length, L 30 in
Central Moment, bmax 7a00 in-#
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Bending Stress Distribution
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7 1 3 3500 2333
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10 1 3 5000 3333
11 1 3 5500 3667
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13 1 3 Bs00 4333
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Figure 12: Initial beam analysis using Excel™.

Figure 13 below depicts a typical Excel™ output after Solver™ was utilized to determine the
required element widths (b(x)) to drive the surface flexural stress to one of the goal values; in this
case, 5000 psi.
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Figure 13: Solver™ determined the required element widths (b(x)) to drive the surface
flexural stress to a goal value. In this case, the goal was 5000 psi.
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Figure 14: Solver™ determined the required beam geometry and the data that was
exported from Excel™ to text editor. Solid model of beam utilized imported geometry.

CAD Software Utilized:
A number of solid modeling CAD packages would accomplish the modeling of the twenty beams

presented in this paper. Construction steps are shown below for [ronCAD™ ° in Figure 135.
IronCAD - [Beam-Base-2K.ics] !EIE
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Figure 15: Part 1 -- Importing geometry from Solver™ analysis via Excel™ via text editor.
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Figure 16: Part 2 -- Importing geometry from Solver™ analysis via Excel™ via text editor.
Beginning construction of beam profile within IronCAD™.
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Figure 17: Part 3 -- Importing geometry from Solver™ analysis via Excel™ via text editor.
Finishing construction in IronCAD™. Final part geometry for 5 kpsi stress level.
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Finite Element Analysis Software Utilized:

Due to the popularity of the Finite Element Method, many FEA software packages are available
to Purdue University undergraduate students including ANSYS, COSMOS/M, COSMOS
DesignSTAR, Pro/Mechanica, etc.. All of the solid models in this paper were analyzed using
COSMOS DesignSTAR™, For this paper, an example of COSMOS DesignSTAR™ * FEA
analysis is shown in Figure 18 for the 5 kpsi part shown in Figure 17 above. It is informative to

note the stress level on the top surface is shown in red, which matches the 5 kpsi goal for this
analysis.

L7 COSMO5/DesignSTAR - [BSpline-COSMO5] =] S
File Edit “iew Define Toolz ‘Window Help _|ﬁ||1|
laaace manon|e 0%

|||/l T[Sk kO S

E; BSpline-COSMOE
= Reference Ge
.}—’ Origini
7 dis]
: wgm Flanel
=3 BSpline
E@ Compone

D g Part 1

J j| 1= .. J b B 2 F [3 Jllsometric j

-] Displacer
[ Strain

(-] Deformati
----- [Z Design CI

Figure 18: COSMOS DesignSTAR™ FEA study showing that Solver™ analysis produced
geometry that has 5 kpsi stress level on top surface as expected.

Conclusions:

The author’s previously described work into four optimization techniques into mechanics classes
has resulted in a focus on Microsoft’s Excel™ Solver™ for undergraduate mechanics applied
optimization instruction. This paper has described both the theory and practice of optimization
implementation, including spreadsheet solver, solid modeling, and finite element analysis (FEA).
Mechanics students in both lower and upper divisions find the above project to be a valuable

learning aid to the underlying theory of beam flexural stresses and to the software tools that are
available to them.

Subsequent work in upper division mechanics classes will include prototyping and photoelastic
testing of scaled versions of these twenty beams. This will enable the design analysis, FEA, and
experimental analysis results to be compared and contrasted. Subsequent work in both divisions
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will include additionally varying the profile of the cross-section to produce higher flexural stresses
at the neutral axis of the simply supported beam. Also, shear forces will be incorporated into a
later project, since they were omitted from the above student work to simply the focus on both
the mechanics and the spreadsheet solver method.
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