AC 2008-172: VISUAL BASIC SOFTWARE FOR DESIGN AND PERFORMANCE PROBLEMS

Noah Brak, West Virginia University

Noah Brak is an undergraduate student studying chemical engineering at West Virginia University.

Joseph Shaeiwitz, West Virginia University

Joseph A. Shaeiwitz received his B.S. degree from the University of Delaware and his M.S. and Ph.D. degrees from Carnegie Mellon University. His professional interests are in design, design education, and outcomes assessment. Joe is an associate editor of the Journal of Engineering Education, and he is a co-author of the text Analysis, Synthesis, and Design of Chemical Processes (2nd ed.), published by Prentice Hall in 2003.

Richard Turton, West Virginia University

Richard Turton received his B.S. degree from the University of Nottingham and his M.S. and Ph.D. degrees from Oregon State University. His research interests are include fluidization and particle technology and their application to particle coating for pharmaceutical applications. Dick is a co-author of the text Analysis, Synthesis, and Design of Chemical Processes (2nd ed.), published by Prentice Hall in 2003.

Visual Basic Software for Design and Performance Problems

Introduction

Most chemical engineering textbooks still show graphical solutions for certain routine design calculations. The Moody plot for friction factors, which is based on experimental data, and the corresponding plots for flow past submerged objects are examples. However, in recent years, curve fits for these have yielded equations that are at least as accurate as reading a graph. Graphs of the Kremser and Colburn equations for separations in dilute systems are another example; although, these equations were derived in order to construct the plots. For heat exchangers, the log-mean-temperature-difference (LMTD) correction factor is generally read from a graph since most textbooks do not provide the appropriate equations, even though the graphs are obtained from these equations.

If the equations are used, it is possible to obtain the information found on the graph and to do design and performance calculations more accurately by means of a computer program. In this paper, we describe Visual Basic for Applications (VBA) programs written for the following design problems: flow in pipes, flow past submerged objects (including packed and fluidized beds), separation in dilute systems, and heat exchangers. The programs not only find the parameters usually obtained from a graph (friction factor, drag coefficient, absorption or stripping factor, LMTD correction factor) but they also perform routine design and performance calculations. The definitions used here are that a design calculation is used to determine the size of a unit with a given input and a desired output, and a performance calculation is used to determine the size.

These programs are not meant to replace process simulators; they are meant to be teaching tools that are more accessible to students than process simulators.

Description of Programs

Table 1 summarizes the programs that will be available for demonstration. Additional details of each program follow.

Separation in Dilute Systems

The relationships used are the Kremser equation¹

$$\frac{y_{A,out} - y_{A,out}^*}{y_{A,in} - y_{A,out}^*} = \frac{1 - A}{1 - A^{N+1}}$$
(1)

if A = 1

$$\frac{y_{A,out} - y_{A,out}^*}{y_{A,in} - y_{A,out}^*} = \frac{1}{N+1}$$
(2)

	I	able 1: Description of VB/	A Programs
Program	Variations within	User Input	Calculated Output
	Program		
Separation in Dilute	Absorption (or	Antoine constant (for	Any one of the following if other two are specified:
Systems	Stripping) – staged	Raoult's Law) or	absorption (stripping) factor, feed stream outlet mole
	systems (Kremser)	Henry's Law Constant,	fraction, number of stages - if Raoult's Law used, can
		feed flowrate and mole	calculate one of temperature, pressure, solvent rate if other
		fraction, solvent inlet	two are specified
		mole fraction	
	Absorption (or	Antoine constant (for	Any one of the following if other two are specified:
	Stripping) –	Raoult's Law) or	absorption (stripping) factor, feed stream outlet mole
	continuous systems	Henry's Law Constant,	fraction, number of transfer units – if Raoult's Law used,
	(Colburn)	feed flowrate and mole	can calculate one of temperature, pressure, solvent rate if
		fraction, solvent inlet	other two are specified
		mole fraction	
Heat Exchangers	Design	7 of 8 of 4 inlet and	Missing one of 4 inlet and outlet temperatures, 2 flowrates,
		outlet temperatures, 2	2 heat capacities; parameters P, R, and LMTD correction
		flowrates, 2 heat	factor (F) , area calculated if overall heat transfer coefficient
		capacities, shell/tube	provided
		configuration; optional	
		overall heat transfer	
		coefficient	
	Performance	area, overall heat	P, R, LMTD correction factor $(F), 2$ outlet temperatures
		transfer coefficient, 2	
		flowrates, 2 heat	
		capacities, 2 inlet	
		temperatures, shell/tube	
		configuration	

C V D V D . **Та**Ыа 10 D

	I adle I	(continued): Description (01 V BA Programs
Program	Variations within	User Input	Calculated Output
	Program		
Pipe Flow	Unknown pressure	Pipe diameter, fluid	Unspecified two of velocity, mass flowrate, volumetric
	drop, work (power),	density, fluid viscosity,	flowrate; unspecified one of pressure drop, power, pipe
	height change, length	roughness factor; all but	length, height change; Reynolds Number and friction factor
		one of pressure drop,	also displayed
		power, pipe length,	
		height change; one of	
		velocity, mass flowrate,	
		volumetric flowrate	
	Unknown volumetric	Pipe diameter, fluid	Velocity, mass flowrate, and volumetric flowrate; Reynolds
	flowrate (or velocity	density, fluid viscosity,	Number and friction factor also displayed
	or mass flowrate)	roughness factor; of	
		pressure drop, power,	
		pipe length, height	
		change	
	Unknown pipe	Fluid density, fluid	Unspecified two of velocity, mass flowrate, volumetric
	diameter	viscosity, roughness	flowrate; pipe diameter; Reynolds Number and friction
		factor; all but one of	factor also displayed
		pressure drop, power,	
		pipe length, height	
		change; one of velocity,	
		mass flowrate,	
		volumetric flowrate	

F • ſ 1 • Table 1 (

Page 13.1388.4

Ducenom	Variations mithin	(Continueu). Description	Coloridation Coloridation Continue
110514111	Program		Carturateu Output
Submerged Objects	Particle Properties	Solid density, shape and	Sphericity and volume-equivalent diameter – these carry
		dimensions	over to other calculations listed below
	Velocity	Fluid density and	Reynolds Number, drag coefficient, terminal velocity if
		viscosity, optional actual	velocity not specified
		velocity	
	Packed bed	fluid density and	Missing parameter of pressure drop, bed length, particle
		viscosity, void fraction,	size, superficial velocity (or mass flowrate or volumetric
		bed diameter, 3 of	flowrate)
		pressure drop, bed	
		length, particle size,	
		superficial velocity (or	
		mass flowrate or	
		volumetric flowrate)	
	Fluidized bed	fluid density and	Missing one of minimum fluidization velocity or pressure
		viscosity, void fraction,	drop per unit length; if specify bed height at minimum
		bed diameter, bed	fluidization, calculates pressure drop
		length, particle size,	
		superficial velocity (or	
		mass flowrate or	
		volumetric flowrate);	
		minimum fluidization	
		velocity or pressure drop	

Ê • • ſ í • Telle 1

Page 13.1388.5

and the Colburn equation¹

$$\frac{y_{A,out} - y_{A,out}^*}{y_{A,in} - y_{A,out}^*} = \frac{1 - \frac{1}{A}}{\exp\left[N_{toG}\left(1 - \frac{1}{A}\right)\right] - \frac{1}{A}}$$
(3)

 $\mathrm{if}\,A=1$

$$\frac{y_{A,out} - y_{A,out}^*}{y_{A,in} - y_{A,out}^*} = \frac{1}{N_{toG} + 1}$$
(4)

These equations are written for absorption, and there are equivalent equations for stripping.

There are three parameters, the absorption (stripping) factor, A, the number of equilibrium stages (or number of transfer units), $N(N_{toG})$, and a dimensionless concentration group in which the outlet mole fraction of the feed stream is usually the unknown. In this dimensionless concentration group, $y_{A.out}^* = mx_{A.in}$. The graph is usually drawn with the dimensionless mole fraction as the ordinate and the number of stages (transfer units) as the abscissa, with the absorption (stripping) factor as curves. The program allows one parameter to be calculated if the other two are specified, either for absorption or for stripping or for staged or continuous differential separations. The absorption factor is defined as L/mG, where L and G are the liquid and gas molar flowates, and m is the distribution coefficient. If Raoult's Law is assumed, m = p^*/P , where the numerator is the vapor pressure, which is a function of only temperature, and the denominator is the total pressure. For this case, if any three of temperature, total pressure, liquid flowrate, or vapor flowrate are specified, the program calculates the missing parameter. Either the Antoine's constants may be entered or a pull-down menu may be used to select a component. If Henry's Law is assumed, *m* (which must be assumed constant) and one molar flowrate must be entered, and the missing molar flowrate is calculated. An experimental partition coefficient can be entered in place of a Henry's Law constant.

Heat Exchangers

For the design problem, the energy balances for each stream (no phase change for either stream) and the design equation are solved. In the energy balance, there are four temperatures, two heat capacities, and two mass flowrates. The program solves for the eighth parameter if any seven are specified. The program also solves for the LMTD correction factor for a variety of heat exchanger configurations. For example, the equations for a 1-2 heat exchanger are²

$$F = \frac{\sqrt{R^2 + 1} \ln\left[\frac{1 - P}{1 - RP}\right]}{\left(R - 1\right) \ln\left[\frac{2 - P\left(R + 1 - \sqrt{R^2 + 1}\right)}{2 - P\left(R + 1 + \sqrt{R^2 + 1}\right)}\right]}$$
(5)

and for R = 1

$$F = \frac{P\sqrt{2}}{(1-P)\ln\left[\frac{2-2P+P\sqrt{2}}{2-2P-P\sqrt{2}}\right]}$$
(6)

where

$$P = \frac{t_{out} - t_{in}}{T_{in} - t_{in}} \tag{7}$$

$$R = \frac{n \mathcal{R}_{tube} C_{p,tube}}{n \mathcal{R}_{shell} C_{p,shell}} = \frac{T_{in} - T_{out}}{t_{out} - t_{in}}$$
(8)

where n & is the mass flowrate of the stream, C_p is the heat capacity of the stream, t is the temperature in the tube, and T is the temperature in the shell.

If the overall heat transfer coefficient is specified, the area is also calculated. As an alternative, the temperature parameters, usually denoted R and P, may be the input; in this case the energy balance is ignored and only the LMTD correction factor is calculated. There is no allowance for phase changes, since the LMTD correction factor is one for these cases (for a pure component).

For the performance problem, the flowrates, heat capacities, inlet temperatures, area, and overall heat transfer coefficient are the inputs. The program calculates the outlet temperatures for a specified heat exchanger configuration. (See the screen shot in Figure 5 in the appendix for the different configurations included.)

Screen shots for an example problem are shown in the appendix.

Pipe Flow

For pipe flow, the mechanical energy balance (MEB) and a curve fit for the friction factor (f) are solved simultaneously. The chosen curve fit is the Pavlov equation³

$$\frac{1}{\sqrt{f}} = -4\log_{10}\left[\frac{\varepsilon}{3.7D} + \left(\frac{6.81}{\text{Re}}\right)^{0.9}\right]$$
(9)

where ε is the roughness factor of the pipe, D is the pipe diameter, Re is the Reynolds number

If one of the pressure drop, pipe length, height change, or power is unknown, the unknown is calculated if the other three are specified. The pipe diameter, pipe roughness, flowrate (mass or volumetric) or velocity, and fluid properties must also be specified. Data for typical schedule pipe sizes and for some fluid densities are included in pull-down menus. This is the typical sequential calculation where the friction factor is first calculated followed by using the MEB to find the only unknown. The program also tests for laminar or turbulent flow, so solutions in the transition region may not be accurate.

If the flowrate (velocity) is unknown, the MEB and the friction factor equations are solved simultaneously for the flowrate (velocity). All parameters other than the flowrate (velocity) must be specified.

If the diameter is unknown, the MEB and friction factor equations are solved simultaneously for the diameter. The standard schedule pipe that corresponds to the solution must be determined by the user.

Screen shots for an example problem are shown in the appendix.

Submerged Objects, Packed Beds, and Fluidized Beds

This program mimics the pipe flow program for flow past submerged objects. Solid properties and dimensions can be provided, and the program will calculate the sphericity and the volume equivalent diameter. These results carry over to other parts of the program.

The terminal velocity for an object may be calculated by providing the fluid properties. Alternatively, the actual velocity may be provided, and the program calculates the drag coefficient and the Reynolds number. The drag coefficient is obtained from the equation of Haider and Levenspiel⁴

$$C_D = \frac{24}{\text{Re}_p} \left[1 + \left(8.171e^{-4.0655\psi_w} \right) \text{Re}_p^{(0.0964+0.5565\psi_w)} \right] + \frac{73.69 \,\text{Re}_p \, e^{-5.0748\psi_w}}{\text{Re}_p + 5.378e^{6.2122\psi_w}}$$
(10)

where ψ_w is the sphericity of the particle, and the Reynolds number, Re_p is defined as

$$\operatorname{Re}_{p} = \frac{D_{p} v \rho}{\mu} \tag{11}$$

- -- --

where v is the "slip" velocity, μ is the fluid viscosity, ρ is the fluid density, and D_p is the diameter of a sphere with the same volume as the particle.

For packed beds, the program uses the general form of the Ergun equation, and the parameters are bed length (height), particle size, bed diameter, superficial velocity, and pressure drop. The program calculates any one of these if all others are specified.

For fluidized beds, the parameters are minimum fluidization velocity and pressure drop per unit length. If one is specified, the other is calculated. Additionally, if the bed height at minimum fluidization is specified, the pressure drop is calculated.

Discussion

These programs are designed to allow students to perform many calculations rapidly. They are not intended to replace the understanding that arises from studying the graphs found in textbooks. The graphs illustrate many important concepts, such as the inability to achieve certain separations of the absorption factor is less than one, the rapid decrease in LMTD correction factor as the parameter P increases, or the friction factor approaching a constant value at high Reynolds numbers. These programs are intended to permit repeated, rapid, calculations with more accuracy than reading a graph. They are also intended to free the student from writing code or using the Excel solver, though there may be beneficial learning from that exercise.

We have not yet used these programs in classes because of the timing of their development. They will be made available next year in the unit operations classes and in the capstone design class.

Conclusion

Visual Basic for Applications (VBA) programs, running in Microsoft Excel[®], for design and performance problems for separation in dilute systems, heat exchangers, pipe flow, and flow past submerged objects have been developed. These are meant to replace the use of graphs such as those for the Moody plot and LMTD correction factor for routine design and performance calculations in a teaching/learning environment.

Bibliography

- 1. Turton, R., R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz, *Analysis, Synthesis, and Design of Chemical Processes (2nd ed.)*, Prentice Hall, Upper Saddle River, NJ, 2003, pp. 572-573.
- 2. Bowman, R. A., A. C. Mueller, and W. M. Nagle, "Mean Temperature Difference in Design," *Transactions of the ASME*, **62**, 283-294 (1940).
- 3. Levenspiel, O. Engineering Flow and Heat Exchange (revised ed.), Plenum Press, New York, 1998, p. 26.
- 4. Haider, A. and O. Levenspiel, "Drag Coefficient and Terminal Velocity of Spherical and non-Spherical Particles," *Powder Technology*, **58**, 63 (1969).

Appendix – Examples with Screen Shots Illustrating VBA Programs

Example 1

Hot water at 43°C flows from an open, constant-level tank through 2 in schedule 40 steel pipe, from which is emerges to the atmosphere 12.2 m below the level in the tank. The equivalent length of the piping system is 45.1 m. Calculate the flowrate.

This problem requires simultaneous solution of a friction factor equation and the mechanical energy balance, with the velocity as the unknown. Karman plots (f vs. $Re \times f^{0.5}$) have also been used to solve this type of problem (Bennett, C. O., and J. E. Myers, *Momentum, Heat, and Mass Transfer (3rd ed.)*, New York, McGraw Hill, 1982, p. 205.). The program solves the two equations simultaneously and provides the velocity, mass flowrate, volumetric flowrate, friction factor, and Reynolds number.

Input screen:

Fluid Flow	0004				×
dP, W, L, or dz unknown V, q,	& m unknown D unknov	vn			
Enter the pipe diameter. D (m) = Enter fluid density. ρ (kg/m ³) =	987	List of standard pipe sizes Fluid Density		1.5 inch Sch (160) 2 inch Sch (5) 2 inch Sch (10) 2 inch Sch (40) 2 inch Sch (80) 2 inch Sch (160)	
Enter fluid viscosity. µ (kg/m s) =	0.00621			2.5 inch Sch (5) 2.5 inch Sch (10) 2.5 inch Sch (40) 2.5 inch Sch (80) 2.5 inch Sch (160)	
Enter piperougnitess. E(mm) =	0.000045				
Enter pressure change (out-in) ΔP (kPa) = Enter work (postive on sysetm) W (kW) =	0	– Unknov Velocity ✔ (wn values. — /. m/s) =		
Enter equivalent pipe length. L (m) =	45.1	Volumet q (tric flow. (m ³ s) =		
Enter difference in height (out-	in).	Mass flo	ow.	0.000	
∆z (m) =	-12.2	m ((kg/s) =		
Calculated values. Reynolds Number. Re =		Fanning f =	g friction factor		
		Calculate			

Page 13.1388.11

Result screen

Fluid Flow				
dP, W, L, or dz unknown V, q, a	& m unknown D unkn	own		
Enter the pipe diameter. D (m) = Enter fluid density. ρ (kg/m ³) = Enter fluid viscosity.	987	List of standard pipe sizes Fluid Density	1.5 inch Sch (160) 2 inch Sch (5) 2 inch Sch (10) 2 inch Sch (40) 2 inch Sch (80) 2 inch Sch (160) 2.5 inch Sch (5) 2.5 inch Sch (10)	
μ (kg/m s) =	0.00621		2.5 inch Sch (40) 2.5 inch Sch (80)	
Enter pipe roughness. $\mathcal{E}(\mathbf{mm}) =$	0.000045		2.5 inch Sch (160)	
Enter pressure change (out-in).				
ΔP (KPd) –	10	Unknown values. —		
Enter work (postive on sysetm) W (kW) =	0	velocity. v (m/s) =	3.338	
Enter equivalent pipe length.		Volumetric flow.		
L (m) =	45.1	q (m ³ s) =	0.007	
Enter difference in height (out-	in).	Mass flow.		
∆z (m) =	-12.2	m (kg/s) =	7.133	
Calculated values. Reynolds Number. Re = [27855.064	Fanning friction facto f =	r 0.00625	
		Calculate		

Example 2

Oil ($C_p = 0.5 BTU/lb \,^{\circ}F$, 4000 lb/hr) is to be cooled from 200 $^{\circ}F$ to 160 $^{\circ}F$ using water (1.0 BTU/lb $^{\circ}F$, 1600 lb/hr) entering at 50 $^{\circ}F$. The overall heat transfer coefficient, $U = 45 BTU/hr \, ft^2 \,^{\circ}F$.

- a. What is the heat load on the exchanger?
- b. What is the outlet water temperature?
- c. What area is required for co-current flow?
- d. What area is required for pure countercurrent flow?
- *e.* What areas are required for a 1-2, 2-4, and a crossflow (shell mixed, tube unmixed) configurations?
- f. A 1-2 heat exchanger has been constructed for this design with an area of 17.5 ft². Now, suppose that the oil flowrate is increased to 4400 lb/hr. If it is assumed that the heat transfer coefficient remains constant, what are the new outlet temperatures?

The first five parts are solved using the design mode. Part f is solved using the performance mode. Even though this problem is in American Engineering units, as long as the data are input in a consistent set of units, the correct solution is obtained. Therefore, the SI units are shown just for guidance.

Input Screen

Heat Exchanger		
Design Performance		
Enter 7 of 8 of the values to calculate the remaining and (P & R).	Optional: Enter U to calculate A.	
Enter the inlet Temperature of the cold stream.	Enter the Overall Heat Transfer Coefficient.	
$T_{c,in}$ (°C) = 50	U (W/m ^{2°} C) =	
Enter the outlet Temperature of the cold stream.		
T _{c,out} (°C) =	Enter P & R to calculate F.	
Enter the inlet Temperature of the hot stream.	N-2N: N shell side passes and 2N tube side passes.	
T _{h,in} (°C) =	1-2	
Enter the outlet Temperature of the hot stream.	2-4	
T _{h,out} (°C) = 160	3-6	
Enter the Heat Capacity of the hot stream.	4-8	
$Cp_{hot} (J/kg^{o}C) = 0.5$	5-10	
Enter the Heat Capacity of the cold stream.		
$Cp_{cold} (J/kg^{o}C) = 1$	6-12	
Enter the Mass Flowrate of the hot stream.	Single Pass, Co-Current	
\mathbf{m}_{hot} (kg/s) = 4000		
Enter the Mass Flowrate of the cold stream.	Single Pass, both fluids mixed.	
\mathbf{m}_{cold} (kg/s) = 1600		
P= R=	Single Pass, one fluid mixed and the other unmixed.	
Calculate	Single Pass, both fluids unmixed.	
	Two Pass, one fluid mixed and the other unmixed.	
	Calculate	

Output Screen for Energy Balance

Design Performance Enter 7 of 8 of the values to calculate the remaining and (P & R). Cptional: Enter U to calculate A. Enter the inlet Temperature of the cold stream. $T_{c,in}$ (°C) = 50 Enter the outlet Temperature of the cold stream. U (W/m ² °C) = $T_{c,out}$ (°C) = 100 $Enter the outlet Temperature of the hot stream. T_{h,in} (°C) = 200 F A Enter the outlet Temperature of the hot stream. F A T_{h,out} (°C) = 150 I-2 Enter the Heat Capacity of the hot stream. C_{P totil} (J/kg^{o}C) = 0.5 Enter the Heat Capacity of the cold stream. C_{P cold} (J/kg^{o}C) = 1 Enter the Meas Flowrate of the hot stream. G_{12} M_{hot} (kg/s) = 4000 Single Pass, Co-Current $
Enter 7 of 8 of the values to calculate the remaining and (P & R), Enter the inlet Temperature of the cold stream. $T_{c,in}$ (°C) = 50 Enter the outlet Temperature of the cold stream. $T_{c,out}$ (°C) = 100 Enter the inlet Temperature of the hot stream. $T_{h,in}$ (°C) = 200 Enter the outlet Temperature of the hot stream. $T_{h,out}$ (°C) = 160 Enter the Heat Capacity of the hot stream. Cp tool (J/kg°C) = $0.5Enter the Heat Capacity of the cold stream.Cp$ cold (J/kg°C) = $1Enter the Mass Flowrate of the hot stream.m_{hot} (kg/s) = 4000$
Enter the inlet Temperature of the cold stream. $T_{c,in}$ (°C) =50Enter the outlet Temperature of the cold stream. U (W/m ² °C) = $T_{c,out}$ (°C) =100Enter the inlet Temperature of the hot stream. F $T_{h,in}$ (°C) =200Enter the outlet Temperature of the hot stream. $I - 2$ $T_{h,out}$ (°C) =160Enter the Heat Capacity of the hot stream. $I - 2$ $C_{P hot}$ (J/kg°C) =0.5Enter the Heat Capacity of the cold stream. $I - 3$ $C_{P cold}$ (J/kg°C) =0.5Enter the Mass Flowrate of the hot stream. $I - 12$ M_{hot} (kg/s) =4000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Enter the outlet Temperature of the cold stream. $T_{c,out}$ (°C) =100Enter the inlet Temperature of the hot stream.F $T_{h,in}$ (°C) =200Enter the outlet Temperature of the hot stream.I -2 $T_{h,out}$ (°C) =160Enter the Heat Capacity of the hot stream.2-4 Cp_{hot} (J/kg°C) =0.5Enter the Heat Capacity of the cold stream.4-8 Cp_{cold} (J/kg°C) =1Enter the Mass Flowrate of the hot stream.6-12 m_{hot} (kg/s) =400
$T_{c,out}$ (°C) =100Enter the inlet Temperature of the hot stream. F $T_{h,in}$ (°C) =200Enter the outlet Temperature of the hot stream. $I-2$ $T_{h,out}$ (°C) =160Enter the Heat Capacity of the hot stream. $2-4$ Cp_{hot} ($J/kg^{o}C$) = 0.5 Enter the Heat Capacity of the cold stream. $4-8$ Cp_{cold} ($J/kg^{o}C$) = 1 Enter the Mass Flowrate of the hot stream. $6-12$ m_{hot} (kg/s) = 4000
Enter the inlet Temperature of the hot stream.N-2N: N shell side passes and 2N tube side passes. $T_{h,in}$ (°C) =200Enter the outlet Temperature of the hot stream. $1-2$ $T_{h,out}$ (°C) =160Enter the Heat Capacity of the hot stream. $2-4$ Cp_{hot} ($1/kg^{o}C$) = 0.5 Enter the Heat Capacity of the cold stream. $4-8$ Cp_{cold} ($1/kg^{o}C$) = 1 Enter the Heat Capacity of the cold stream. $6-12$ Cp_{cold} ($1/kg^{o}C$) = 1 Enter the Mass Flowrate of the hot stream. $6-12$ M hot (kg/s) = 4000
$T_{h,in}$ (°C) =2001-2Enter the outlet Temperature of the hot stream.2-42-4 $T_{h,out}$ 1603-6Enter the Heat Capacity of the hot stream.4-8 Cp_{hot} 0.5Enter the Heat Capacity of the cold stream.5-10Cp_{cold}1Enter the Mass Flowrate of the hot stream.6-12M_{hot}Single Pass, Co-CurrentSingle Pass, Co-CurrentSingle Pass, Co-Current
Enter the outlet Temperature of the hot stream. $2-4$ $T_{h,out} (^{o}C) =$ 160Enter the Heat Capacity of the hot stream. $3-6$ $Cp_{hot} (J/kg^{o}C) =$ 0.5 Enter the Heat Capacity of the cold stream. $4-8$ $Cp_{cold} (J/kg^{o}C) =$ 1 Enter the Mass Flowrate of the hot stream. $6-12$ $m_{hot} (kg/s) =$ 4000
$T_{h,out}$ (°C) =1603-6Enter the Heat Capacity of the hot stream. Cp hot (J/kg°C) =0.54-8Enter the Heat Capacity of the cold stream. Cp cold (J/kg°C) =5-10Enter the Mass Flowrate of the hot stream. m hot (kg/s) =400
Enter the Heat Capacity of the hot stream. 4-8 Cp_{hot} (J/kg°C) = 0.5 Enter the Heat Capacity of the cold stream. 5-10 Cp_{cold} (J/kg°C) = 1 Enter the Mass Flowrate of the hot stream. 6-12 m_{hot} (kg/s) = 4000
$Cp_{hot} (J/kg^{\circ}C) =$ 0.5 Enter the Heat Capacity of the cold stream. 5-10 $Cp_{cold} (J/kg^{\circ}C) =$ 1 Enter the Mass Flowrate of the hot stream. 6-12 $m_{hot} (kg/s) =$ 4000
Enter the Heat Capacity of the cold stream. $6-12$ Cp cold (J/kg°C) = 1 Enter the Mass Flowrate of the hot stream. Single Pass, Co-Current m hot (kg/s) = 4000
Enter the Mass Flowrate of the hot stream. M hot (kg/s) = 4000 Single Pass, Co-Current
Enter the Mass Flowrate of the cold stream. Single Pass, both fluids mixed.
P= 0.333 R= 0.8 Single Pass, one fluid mixed and the other unmixed.
Calculate Single Pass, both fluids unmixed.
Two Pass, one fluid mixed and the other unmixed.
Calculate

Output Screen for Heat Exchanger Design

The program automatically calculates the LMTD correction factor and area for all configurations.

Heat Exchanger		
Design Performance		
Enter all of the following values. Enter all of the following values. Enter the Overall Heat Transfer Co $U(W/m^2^{\circ}C) =$ Enter the area of the heat exchang $A(m^2) =$ Enter the inlet Temperature of the l $T_{h,in}$ (°C) =	efficient. 45 je surface. 17.5 hot stream. 200	Select a Heat Exchanger configuration. Then allow the program to solve for F, P, R, and the outlet temperature of both the hot and cold streams. Results for selected Heat Exchanger configuration. N-2N: N shell side passes and 2N tube side passes. $P = $ $R = $ 1-2 C Outlet temperature of the hot stream. 2-4 C Outlet temperature of the cold stream. 3-6 C Outlet temperature of the cold stream.
Enter the inlet Temperature of the $T_{c,in}$ (°C) = Enter the Heat Capacity of the hot Cp hot (J/kg°C) = Enter the Heat Capacity of the cold Cp cold (J/kg°C) =	cold stream. 50 stream. 0.5 I stream.	4-8 C 5-10 C 6-12 C Single Pass, Co-Current C Single Pass, both fluids mixed.
Enter the Mass Flowrate of the hot $m_{hot} (kg/s) =$ Enter the Mass Flowrate of the colo $m_{cold} (kg/s) =$	stream. 4400 I stream. 1600	Single Pass, one fluid mixed and the other unmixed. Single Pass, both fluids unmixed.
		Two Pass, one fluid mixed and the other unmixed.

Input Screen for Part f, A Performance Calculation

The performance problem is only solved for a chosen configuration. Here, the radio button for a 1-2 heat exchanger is checked.

Output Screen for Performance Problem

Heat Exchanger				×
Design Performance				
Enter all of the following values.	ficient.	Select a Heat Exchanger of the program to solve for F temperature of both the h	configuration. Then allow — , P, R, and the outlet ot and cold streams.	Results for selected Heat Exchanger configuration.
U (W/m ² °C) =	45	-		
Enter the area of the heat exchange	surface.	N-2N: N shell side passes ar 1-2 0.972	nd 2N tube side passes.	Outlet temperature of the hot stream. T _{h.out} (°C) = 163.19
A (m ²)=	17.5	2-4	c	Outlet temperature of the cold stream
Enter the inlet Temperature of the ho	ot stream.	3-6		T _{c.out} (°C) = 100.61
T _{h,in} (°C) =	200	4-8	— c	
Enter the inlet Temperature of the co	ld stream.	5 40		
T _{c,in} (°C) =	50	- 5-10	C	
Enter the Heat Capacity of the hot st	tream.	6-12	0	
Cp hot (J/kg°C) =	0.5	Single Pass, Co-Current		
Enter the Heat Capacity of the cold s	tream.		C	
Cp _{cold} (J/kg°C) =	1	Single Pass, both fluids mixe	ed.	
Enter the Mass Flowrate of the hot st	tream.		C	
m _{hot} (kg/s) =	4400	Single Pass, one fluid mixed	and the other unmixed.	
Enter the Mass Flowrate of the cold s	tream.		C	
m _{cold} (kg/s) =	1600	- Single Pass, both fluids unmi	ixed.	
			C	
		Two Pass, one fluid mixed a	nd the other unmixed.	
			C	
		Solv	ve	
		<u></u>		