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Visual Models for Abstract Concepts towards 

Better Learning Outcomes and Self-Efficacy 

 

Abstract 

We constructed and analyzed an evidence-based practice case to see if visual models help 

students develop a better understanding of abstract concepts and enhance their self-efficacy 

when solving engineering problems. Abstract concepts without corresponding physical 

phenomena are often found in the domains of industrial engineering, engineering 

management, and systems engineering. In this study, we focus on inventory control of a 

supply chain, which is typically a junior level undergraduate production systems course in an 

industrial engineering program. Visual models of inventory behaviors were designed to 

complement the traditional approach of mathematical derivations and numerical 

computations. In this context, we use a randomized-controlled design research framework 

implementing the visual models in a quiz. Pre- and post-surveys on student self-efficacy were 

used to assess the effects of the visual models. Students’ quiz outcomes and self-efficacy 

surveys are compared to those from a control group that did not use the visual models, and 

the results from both groups were statistically analyzed. This study is motivated by 

engineering students’ inability to understand abstract concepts and the need for continuous 

improvement of student learning. The results show that, within the scope of the 

aforementioned experiment and collected data, the visual models do help students understand 

abstract concepts and improve their self-efficacy. This study can serve as a basis for further 

studies on the extent of visual models helping students develop a complete mental model and 

on whether better mental models actually lead to a better understanding of the domain 

knowledge and enhance students’ self-efficacy. 

 

Keywords: Abstract Concepts, Visual Models, Learning Outcomes, Self-Efficacy 

 

Introduction and Objectives 

 

Abstract concepts without direct physical representations related to principles of engineering 

economics and management are difficult for engineering students to conceptualize as 

evidenced by their inability to explain their solutions. We observe that efforts to improve the 

learning outcomes of such students have included a substantial increase in the use of visual 

models for abstract concepts in textbooks, DVDs, and online resources.  
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To our knowledge, however, there has been little systematic research on whether and how 

visual models help engineering students better understand abstract concepts especially in the 

areas of industrial engineering, engineering management, and systems engineering. To 

address this issue from an engineering education research perspective, two essential questions 

are (1) to what extent do visual models of such concepts help students develop a complete 

mental model and (2) whether better mental models lead to better understanding of the 

domain knowledge and enhance students’ self-efficacy. 

 

Towards answering these important questions, we explore the effects of visual models on 

students’ understanding of domain knowledge and their self-efficacy in the specific context of 

inventory control theory. This study is motivated by our preliminary conjecture that students’ 

mental models might be enhanced when visualization complements mathematical 

formulations and solutions. This is consistent with Hong and O’Neil
1
 who found that simple 

diagrams helped students develop mental models of statistical confidence intervals. The 

importance of visualization in student learning can also be seen in the large increase in graphs 

and diagrams in teaching materials in recent years (e.g., Wheat
2
 reports that a macroeconomic 

textbook containing 200-400 graphs is not uncommon). When visualization is needed for 

abstract concepts with few intuitive physical representations, however, we have observed that 

there are few, if any, graphs and diagrams.  

 

The rest of the paper is organized as follows. In the next section, we briefly review the 

existing literature relevant to this study. This is followed by a description of our research 

scheme in the context of inventory control theory and the relevant test contents. We next 

explain the assessment of the test results, followed by the pre- and post- surveys for students’ 

self-efficacy and their corresponding assessment results. We then provide concluding remarks 

and comment on future research. 

 

Literature Review 

 

There have been numerous studies related to visual learning styles and the benefits of 

visualization (see e.g., Felder
3
). Tall

4
 found that, when students drew graphs that represented 

physical representations (e.g., slope or area), they developed a better understanding of 

calculus. There are many examples of visualization tools that were developed to aid student 

P
age 24.1363.3



learning in engineering education. For example, Heath et al.
5
 suggested that the visual display 

of performance data on parallel computing would be important for student comprehension. 

Wood
6
 developed software for visualizing concepts related to digital logic design and digital 

signal processing. The goal was to help students understand basic concepts in the context of 

electrical engineering.  Assessments of improvement in student learning were not provided. 

Extensive research has demonstrated the efficacy of visual aids on students learning across a 

variety of domains, including learning verbal materials, spatial layout, sports rules, 

mechanical structures, etc. (e.g., Novick et al.
7
).  

 

One reason why visual models improve student understanding is that visual cues help 

learners offload part of the conceptual processing required to the visuospatial domain, thus 

freeing up valuable verbal resources in working memory (Haugwitz et al.
8
). Modern 

theoretical models of working memory typically consists of three components, a central 

executive responsible for attention deployment, a phonological loop responsible for 

temporarily holding verbal information in short-term memory, and a visuospatial sketchpad 

responsible for storing visual information (e.g., colors, shapes) and spatial relations among 

objects (Baddeley
9
). Working memory capacity is predictive of mathematics performance and 

general fluid intelligence (Bull and Scerif 
10

). Visualization may help reduce overloading of 

the phonological component of working memory, which is crucial to performing complex 

mathematical operations (e.g., holding intermediate values in mind while performing other 

important calculations). Another reason that visual representation enhances problem solving 

is by turning abstract concepts into concrete spatial layouts (Winn
11

) and by exchanging 

inefficient sentential representations (which are sequential and thus slow) for easier 

perceptual representations (Larkin and Simon
12

). 

 

As for mental models, several theories have been proposed to explain how visualization 

improves mental modeling from a cognitive perspective. Crapo et al.
13

 theorized that students 

try to reconcile their mental models with the visualization and make changes in their mental 

models based on any disparities. The challenge for an empirical study is that mental models 

are not directly observable. Therefore, students need to externalize their mental models in 

order to collect data and analyze the models. During problem solving, students try to 

understand a scenario by constructing representations (i.e., mental models) that help them 

understand what is happening in the scenario. 
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Due to its effectiveness in promoting learning, mathematical educators have advocated 

increased use of visual aids in the classroom (Barwise and Etchemendy
14

), but visualization 

aids for abstract concepts in engineering have not been as widely adopted. In industrial 

engineering, systems engineering, and engineering management domains (which all share 

common interests in supply chains), the impact of visualization on learning abstract concepts 

has not been studied. Given that self-efficacy has been closely correlated to cognitive 

engagement and performance (see e.g., Pintrich and de Groot
15

), the relationship between 

visual models and enhanced self-efficacy needs to be further investigated. 

 

Methodology 

 

We conducted a randomized study as follows. A problem solving session for inventory 

control theory was designed for junior level undergraduate industrial engineering majors. We 

also conducted pre- and post- self-efficacy surveys on students’ abilities regarding the 

specific domain knowledge aspects of inventory control theory. 

 

Participants 

 

Students in the class were divided randomly into 2 groups, A and B. In Group A, 44 students 

completed the problems and in Group B, 42 students completed the problems. Both groups 

had originally been designed for 45 students each, but last-minute sickness, etc., led to less 

than 100% completion. For Group A, the problems on the inventory control theory were 

accompanied by relevant visual models. For Group B, the same problems were given without 

the figures. 

 

 

Procedure 

 

The problems were given to each group at the same time, but in different classrooms. There 

were two separate problems that participants were asked to solve. In the first problem (No. 

1b), both Group A and Group B students were asked if the optimal reorder point derived from 

No. 1a through an iterative, computational algorithm could be greater than the corresponding 

order quantity, and explain the reason. Group A was given the visual model in Figure 1. 

 

P
age 24.1363.5



 

Figure 1. A hypothetical example of Inventory Position vs. Net Inventory 

Your observation starts at t0; t1 & t2 define the lead time duration 

 

 

This model was based on students’ frequent questions on the reorder point vs. the order 

quantity such as “If the optimal order quantity is smaller than the reorder point, how can we 

ever reach the reorder point by placing an order?” Such questions reveal the incomplete 

understanding of the relationship between the reorder point and order quantity because the 

reorder point is an abstract concept. That is, reorder point is measured in abstract Inventory 

Position, and Inventory Position in turn is equal to [On-Hand Inventory – Backorder + 

On-Order Quantity] and is never a point in time. The order quantity, on the other hand, is 

conceptually closer to Net Inventory Position. Net Inventory Position exactly reflects the 

level of On-Hand Inventory when there is no backorder (i.e., in this case, it does have an 

exact physical representation as it represents what is physically available on the storage shelf). 

Figure 1 may help students understand that order quantity can be smaller than the reorder 

point and that can be optimal for the inventory system in the test.  

 

In the second problem (No. 2a, 2b, and 2c) both Group A and Group B students were asked to 

compute the amounts of expected surplus and shortage for a day and the corresponding 

expected costs for a day. They were also asked if both the expected surplus cost for a day and 
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the expected shortage cost for a day could be positive, and explain the reason. Group A was 

given the visual model shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This model is based on students’ frequent questions on the average shortage and the average 

surplus in the context of Net Inventory such as “How can both the average shortage and the 

average surplus be positive?” At a single point in time, Net Inventory can be positive, zero, or 

negative, and the corresponding shortage and surplus are never both positive. Average 

shortage and average surplus must be positive as they are averaged over time (except when 

the probability of shortage or surplus is artificially and unrealistically set to zero a priori). 

Hence, such questions reveal the confusion over shortage/surplus at a single point in time and 
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Figure 2. A Representative Realization of Net Inventory over 5 Days 
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the average shortage/surplus. Figure 2 may help students understand that, at a time point, the 

shortage and surplus cannot both happen while, if an average is taken over time, both must be 

positive. 

 

The questions for both pre- and post- surveys were exactly the same, and were concerned 

with students’ ability regarding some of the key issues in inventory control. The instructions 

for the students and the survey are shown below.  Student survey responses were based on a 

Likert scale. 

 

Evaluate your ability to perform each of the following tasks on a numerical scale of 1 to 5 (1 

being not at all yet; 5 being fully able as of now). 

 

1. Describe in words the relationship between the inventory position and the net inventory. 

1 2 3 4 5 NA 

2. Plot the relationship between the inventory position and the net inventory.    

1 2 3 4 5 NA 

3. Describe the difference between the average levels of shortage and surplus vs. the 

individual realizations of shortage and surplus. 

1 2 3 4 5 NA 

  

The pre- survey was conducted one lecture prior to the test while the post-survey was 

conducted one lecture after the test. Both surveys were voluntary and anonymous except for 

the check mark indicating group identification.  

 

Results 

The relevant test results for Group A for No.1b, No. 2a, No. 2b, and No. 2c are summarized 

in Table 1 below. 
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Group A  Test Results          Average      Standard Deviation 

No.1b          5.66/10              1.46  

No. 2a         16.50/20            2.17 

No. 2b         16.16/20            2.50 

No. 2c          6.73/10            3.03 

Table 1. The Average Scores and Standard Deviations of Group A 

 

The relevant test results for Group B for No.1b, No. 2a, No. 2b, and No. 2c are summarized 

in Table 2 below. 

Group B  Test Results          Average      Standard Deviation 

No.1b          4.57/10             1.33 

No. 2a         16.43/20            2.29 

No. 2b         16.14/20            2.83 

No. 2c          6.57/10             2.59 

Table 2. The Average Scores and Standard Deviations of Group B 

 

Given the 44 data points of Group A and the 42 data points of Group B, a two-sample t-test 

for equal means is justified. That is, the null hypothesis is that the means of both groups are 

the same while the alternative hypothesis is that the means of both groups are not the same. 

We note that, for just two groups, a One-Factor ANOVA will lead to the same result as the 

t-test while, for three or more groups, t-test is not recommended due to an increased chance 

of committing a type I error. 

 

For No. 1b, the resulting t statistic and the threshold value at 95% were given by 3.61 and 

2.02, respectively. Hence, we reject the null hypothesis that the means are the same. For No. 

2a, No. 2b, and No. 2c, the resulting t statistic and the threshold value were such that we fail 

to reject the null hypothesis that the means are the same. 
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From the t-test result on No. 1b, it appears that Figure 1 was helpful for the students to 

explain the reason behind their answers. On the other hand, from the t-test results on No. 2a, 

No. 2b, and No. 2c, it appears that Figure 2 was not helpful. We note that a possible reason is 

that Figure 2 may lead to misapplications. e.g., add up all the shortages and surpluses and 

divide by the total number of days. This is similar to “On odd-days, shortages, on even-days, 

surpluses, hence neither surplus nor shortage on average.” 

 

Self-Efficacy Survey Results 

For Group A, 28 and 33 students participated in pre- and post-surveys, respectively while, for 

Group B, 29 and 34 students participated in pre- and post-surveys, respectively. As both 

surveys were voluntary and anonymous, responses could not be tracked to an individual. For 

example, an individual might have participated in the post-survey only (and not pre-survey). 

Therefore, traditional pre/post assessment tools such as a paired t-test were not applicable. 

Statistical assessment, however, is still possible in a following way. We demonstrate this by 

the following example on pre/post-survey Question 1. 

 

The relevant survey results for Group A for Question 1 are summarized in Table 3 below. 

Group A Survey Question 1          Average      Standard Deviation 

       Pre-          2.786/5             0.787  

       Post-          3.273/5            1.098 

Table 3. The Pre- and Post- Survey Results of Group A 

The relevant survey results for Group B for Question 1 are summarized in Table 4 below. 

Group B Survey Question 1          Average      Standard Deviation 

       Pre-          2.724 /5             1.192 

       Post-          2.618/5            1.181 

Table 4. The Pre- and Post- Survey Results of Group B 

Given that the minimum number of the data points is 28 and the maximum number of the 

data points is 34, a two-sample t-test for equal means is reasonable. 
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First, for the means of pre- Group A and Group B, the null hypothesis is that the means of 

both groups are the same while the alternative hypothesis is that the means of both groups are 

not the same. The resulting t statistic and the threshold value at 95% were given by 0.223 and 

2.00, respectively. Hence, we fail to reject the null hypothesis that the means are the same.  

 

Next, for the means of post- Group A and Group B, the null hypothesis is that the means of 

both groups are the same while the alternative hypothesis is that the means of both groups are 

not the same. The resulting t statistic and the threshold value at 95% were given by 2.06 and 

1.998, respectively. Hence, we reject the null hypothesis that the means are the same.  

 

The fact, that we fail to reject the null hypothesis for the pre-test survey Question 1 while we 

reject the null hypothesis for the post-test survey Question 1, does indicate that self-efficacy 

increased due to the inclusion of Figure 1 in the test. 

 

There are numerous explorations possible for the near future such as an exploration for an 

alternative statistical test that is more straightforward. In addition, further explorations remain 

regarding Questions 2 and 3, over the significance levels, and with different alternative 

hypotheses (e.g., upper-tailed instead of two-tailed). 

 

Concluding Remarks and Future Works 

 

In this paper, we constructed and analyzed an evidence-based practice case to see if visual 

models led to better understanding of the concepts by students and enhanced their 

self-efficacy when problems contained abstract concepts without direct physical 

representations. In the context of inventory control theory, we used a randomized-controlled 

design research framework implementing the visual models in a quiz. Pre- and post-surveys 

on student self-efficacy were used to assess the effects of the visual models. Students’ 

performance and self-efficacy surveys were compared between a control group that did not 

use the visual models and the group with the visual models. The results showed that the 

visual models did help students understand abstract concepts and improve their self-efficacy.  
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This study can serve as a basis for further studies on the extent of visual models helping 

students develop a complete mental model and on whether better mental models actually lead 

to better understanding of the domain knowledge and enhance students’ self-efficacy. 

Furthermore, such investigation can be extended to the case of visual feedback (cf. teaching 

materials; see e.g., Stieff et al.
16

).  

 

In addition, this study shows how visual models can be integrated into a course. How these 

visual models are effectively and efficiently integrated into courses and curricula is another 

important research issue. 

 

We also note that although this study focused on abstract concepts in industrial engineering, 

systems engineering, and engineering management, the research findings can be extended to 

other related areas of engineering, other STEM’s, business, management, and economics. 
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