
Paper ID #13706

Work-in-Progress: Automation in Undergraduate Classes: Using Technol-
ogy to Improve Grading Efficiency, Reliability, and Transparency in Large
Classes

Mr. Lee Kemp Rynearson, Purdue University, West Lafayette

Lee Rynearson is currently pursuing a PhD in the School of Engineering Education at Purdue University.
He received a BS and MEng in Mechanical Engineering from the Rochester Institute of Technology
and has previous experience as an instructor of engineering at the Kanazawa Institute of Technology, in
Kanazawa, Japan. His current research interests focus on learning task design and first-year engineering
topics.

Mr. David W Reazin, Purdue University

Dave Reazin is currently a third year student at Purdue University working towards a B.S. in Electrical
Engineering with a focus on Automatic Controls and Integrated Software Methods. Scheduled to grad-
uate in 2016, Dave plans to enter industry before returning to school to complete his Masters. Through-
out his time at Purdue, Dave has also worked as a Resident Assistant and Staff Resident for University
Residences, a Teaching Assistant and Grading Systems Team Lead for the Purdue University First Year
Honors Engineering Program, and an Electrical Engineering Intern for United Launch Alliance in Cape
Canaveral, FL.

c©American Society for Engineering Education, 2015

P
age 26.1761.1



Automation in Undergraduate Classes:  

Using Technology to Improve Grading Efficiency, Reliability, and 

Transparency in Large Classes 
 

Abstract 

 

Large undergraduate classes offer many challenges relating to scale.  This paper describes a suite 

of automated computer tools developed to assist with these challenges, specifically those relating 

to grading and performance analysis for either individual students or classes as a whole.  While 

the computer tools developed are independent of any Learning Management System (LMS), they 

could be adapted to operate more closely with an LMS in other academic environments. 

 

The suite of tools in question allow for automated digital rubric generation, collection from 

students, return to students, and most notably, analysis.  Features include the ability to condense 

several files submitted by one student into a single PDF for review, the ability to execute 

submitted code in three programming languages (Python 3, MATLAB, and ANSI C) while 

capturing the output into a PDF, and the ability to track error conditions such as late submission 

and incorrect file names and automatically assign penalties.   

 

Statistical reports are generated for each assignment automatically, providing a window into 

students’ performance and possible areas of concern.  Automated warnings alert the teaching 

team to potential errors in grading, equity issues (such as one section of the class performing 

substantially better or worse than another) or opportunities for improvement in the academic 

process (such as rethinking the pedagogy relating to specific ideas or areas that prove broadly 

troublesome).  These reports streamline instructor workflow and allow for deeper insights into 

student performance than time would normally allow.  

 

The suite of tools was implemented using Visual Basic for Applications (VBA), Python 3, and 

MySQL databases.  The implementation of these automated tools was inexpensive and provided 

many benefits to the instructors and graders in terms of convenience, time saved, grader 

accountability, process reliability, and enabling new diagnostic capabilities.  Furthermore, cost 

savings were realized from reduced grader time and from almost eliminating the use of paper to 

offset the cost of developing the tools.  This paper presents details on the tools developed as a 

part of this effort, preliminary results of the adoption of the tools in a large first-year class, the 

potential uses of similar tools in other venues, and avenues for future work and development. 

 

Introduction 

 

The use of computer tools to support education and educational administration and assessment, 

including grading, continues to rise.  Large-enrollment courses are one venue where simply 

managing grading and assignment return can be difficult or time-consuming, and computer tools 

such as learning management systems (LMS) can be of benefit on a larger scale in larger scale 

courses. 

 

The computer tools discussed in this paper were developed to support grading procedures in a 

large-enrollment first-year undergraduate engineering course at a large Midwestern university.  

P
age 26.1761.2



With several hundred students, dozens of undergraduate grading staff members, and a yearlong 

course sequence featuring more than 100 graded assignments per student, including more than 30 

assignments requiring student-generated code to be evaluated, grading is a significant effort and 

expense for the course. 

 

The primary driver to develop the computer tools was to speed the grading of assignments with 

student-submitted programs.  While graders could simply 'eyeball' a student's code, there is an 

increased potential for error compared with reviewing actual program output for various test 

cases.  Running each student’s code adds extra steps and time requirements, in addition to the 

potential for the grader to make a mistake in setting up or running the program.  The faculty 

determined that the capability to automatically run a student's code in the various languages used 

in the course (Python 3, MATLAB, and ANSI C) and capture its output for multiple test cases 

(where program input would be unknown to the student) would substantially speed and improve 

the grading process in the course.   

 

Once that determination was made, opportunities were observed to extend the capabilities of the 

system to gain other benefits for the course in other areas, including eliminating a variety of 

grader errors associated with grading on paper rubrics (such as omitted or incorrect student 

names or incorrect summations of earned points) to increase grading reliability, addressing 

student reports that different course grading staff members consistently rate students higher or 

lower than other grading staff members to address an important equity issue, and gaining insight 

into the performance of students on specific aspects of assignments, overall and between sections 

of the course, that would otherwise be too time-consuming to produce manually on a regular 

basis, improving transparency (to the faculty) and allowing for interventions to be implemented 

when situations of concern arise.   

 

While some features of the overall set of computer tools produced duplicate features that are 

commonly and commercially available, such as the ability to create digital grading rubrics for 

each student in the class, others capabilities are less common, especially in formats that are 

useful for large enrollment engineering classes.   

 

While automated assessment of programming assignments has been pursued since the punch-

card era4 and research continues vigorously5, their use is not widespread in engineering 

instruction and it remains common for completely manual inspection of student code to be 

performed, especially for relatively complex codes that permit design creativity.  Our tools retain 

human review of student code and outputs but allow much greater speed, while supporting 

several languages used in engineering and feeding into a system for student and course 

performance analysis. 

 

Grading equity between students has been approached from several directions, including the use 

of grading rubrics6 and TA training3 but classes with many graders may benefit from the use of 

grading data to examine grader propensity for harsh or lenient grading directly to enable 

evidence-based faculty intervention in extreme cases.  Our course tools support some methods 

for direct examination of grader performance and suggest avenues for further work in this area. 

 

P
age 26.1761.3



'Big data' and learning analytics have become ubiquitous terms in higher education in the last 

few years, and some examples of big data being employed to the benefit of individual courses 

certainly exist1, 7  many applications of big data in higher education are occurring at an 

institutional level.  However, the ability to harvest useful data from individual assignment 

criteria for a wide range of engineering assignments and provide timely information to faculty 

about performance at such a granular level in an automated fashion is not yet widespread.  Large 

enrollment courses, where it is difficult for faculty to have personal contact with the majority of 

students and where a quantity of students is present sufficient to enable statistical analysis of 

performance data may especially benefit from implementing computer tools to collect and 

analyze course data.  The course tools described in this paper illustrate the collection of nearly all 

course grading data and automated per-assignment results reporting and statistical analysis. 

 

Computer Tools Development & Costs 

 

To achieve the goals laid out in the introduction, seven computer tools were created.  

Development and deployment occurred on a rolling basis over three semesters.  Different 

versions of the digital rubrics were tested experimentally for student readability and grader 

grade-entry speed prior to settling on a final design.  All hands-on code development was 

undertaken by undergraduate students employed by the course, overseen by faculty and graduate 

students.  It is estimated that fewer than 200 undergraduate working hours were spent in 

developing and testing the computer tools, leading to a labor cost of less than $1500.  

 

Developed Computer Tools  

 

The seven existing computer tools are all employed in the grading and analysis of a single 

assignment.  Figure 1 shows the workflow that would be used in the grading and analysis of a 

single class assignment, illustrating the relationship between the seven tools and their 

inputs/outputs.  Four of these seven tools (1.1, 2.1, 3.1, 4.1) mostly duplicate features that would 

commonly be available for in-LMS grading workflows (such as automatically generating grading 

rubrics with each student's name, or returning graded work to students) but were created to 

support and streamline the process of using the three tools (2.2, 4.3, and 5.1) that provide more 

interesting features.   

 

The decision to develop standalone computer tools versus attempting some level of integration 

with the current campus LMS was made based on the judgment that any such integration would 

involve a great deal of political 'overhead' if it were even permitted, and would also expose the 

system to changes made to the LMS itself, which would be outside the control of course faculty.  

Circumstances may differ across time and institutions. 

 

Each computer tool's nature and function will be briefly discussed. 

  

P
age 26.1761.4



 
Figure 1 - Flowchart of Computer Tool Use, Inputs, and Outputs for a Generic Assignment 

 

Computer Tool Language Program Inputs Program Outputs Output 

Format 1.1: Submitted 

Assignment Processing 

Python Raw student submissions 

from LMS 

Intelligibly renamed and sorted student 

submissions, listing of student assignments 

requiring late or incorrect filename penalty 

Varies (.docx, 

.pptx, .py, .m, 

.c, PDF, .txt) 

2.1: Personalized 

Grading Rubric 

Generation 

VBA Master rubric from 

faculty w' grading criteria 

Rubrics personalized for each student w' any late 

submission or wrong filename penalties applied 

Excel (.xlsx) 

2.2: Program Output 

PDF Generation 

Python, 

MATLAB 

Student submitted 

programs (.py, .c, .m) 

PDF's combining student-submitted code and code 

execution output for test cases 

PDF 

3.1: Rubric Collection  Python Graded rubrics Graded rubrics, sorted Excel (.xlsx) 

4.1: Grade Compilation 

& Rubric PDF 

Generation 

VBA Graded rubrics, sorted Finalized assignment grades sheet                        

(for LMS upload ) 

Excel (.xlsx), 

PDF 

4.2: Rubric Return to 

Students 

Python, 

LINUX 

Graded rubrics, sorted Rubrics returned to students' institutionally 

provided computer storage accounts 

PDF 

4.3: Grades Database 

Updater 

Python Graded rubrics, sorted Updated MySQL database storing per-grading-

criterion performance   

MySQL updates 

5.1: Faculty Report 

Creation 

Python MySQL database PDF Assignment Reports PDF 

Table 1 - Computer Tool Languages, Inputs, and Outputs 

Tool 1.1: Submitted Assignment Processing 

P
age 26.1761.5



 

After an assignment's submissions are bulk downloaded from the LMS (BlackBoard Learn), this 

Python tool alters the file names to be shorter and more human-readable, creates a new 

assignment-specific file structure to contain the student work using a library of student data 

(name, working team, grader, etc.), and sorts each submitted file into an appropriate folder for 

later grading.  This tool also outputs a text listings of students who submitted late or with 

incorrect file names, based upon information supplied by the LMS.  These outputs are used by 

Tool 2.1 to assess penalties automatically. 

 

Tool 2.1: Personalized Grading Rubric Generation 

 

Based on a master grading rubric provided by the faculty containing grading criteria, point 

values, etc., a VBA script is used to automatically generate personalized rubrics in Excel format 

for each student or team in the class, depending on assignment type.  Excel was selected for 

grade entry as a platform that would be widely available to and understood by our undergraduate 

grading staff.  Rubric personalizations are based on a predefined dictionary of class information 

and include student name, grader name, and team number. Penalties are automatically assessed 

for incorrect filenames or late submissions on a student-by-student basis based on the outputs 

from Tool 2.1 and a message stating the reason for the penalty is applied to the rubric. After the 

rubrics are generated, a Python3 script sorts the rubrics into the file structure created by Tool 2.1 

such that the personalized rubric is placed in the same directory as the renamed student or team 

submissions.  

 

Tool 2.2: Program Output PDF Generation  

 

To support rapid and consistent grading, a set of scripts were developed to automatically compile 

(if needed) and run student-submitted programs written in Python 3, MATLAB, or ANSI C.  

Test cases can be automatically run against all student programs and a single PDF is generated 

for each student that shows the original student-submitted code, the output of the code against 

each of the test cases, and administrative information such as the filename, number of lines of 

code, line numbers, maximum line length, and any error messages that may have been generated 

during the output PDF creation process, such as the failure of the submitted program to compile. 

Parallel to this stage, student work is compared via MOSS2 to assess the likelihood of plagiarism 

in specific assignments, but that part of the process is not automated at this time.  MOSS 

operations may be automated into this or another tool at a later time. 

 

Tool 3.1: Rubric Collection  

 

After the undergraduate grading staff fills in the grading rubrics, this Python 3 script copies all 

filled-in rubrics into a single location.  The primary reason for collecting all rubrics into a single 

directory is administrative; it makes certain that all expected rubrics are found and ensures that 

no rubrics are opened by users when the subsequent script is run.  

 

Tool 4.1: Grade Compilation & Rubric PDF Generation 

 

P
age 26.1761.6



A VBA script extracts the final grade information from each filled-in student rubric into an Excel 

spreadsheet. During this process, each rubric is checked for completion, and the operator is 

notified of potential errors in grading including a line item being left blank or invalid input.  This 

script supports the grading of individual or team assignments in addition to forms of team 

grading drawing upon the performance of individual students.  These include the ability to assign 

the highest, lowest, or average team grades to all members of the group.  These capabilities are 

employed in the classroom to motivate team interdependence in an active-learning environment. 

The resulting spreadsheet contains the assignment grades in several different formats for 

convenient review, upload back into the LMS, and for upload into an LMS-independent overall 

course grading spreadsheet. While compiling the assignment grades, this VBA script also creates 

a PDF version of each personalized and filled-in rubric for later return to students. 

 

Tool 4.2: Rubric Return to Students 

 

This Python 3 script sorts the finalized rubric PDF's generated by Tool 4.1 into a distribution 

directory on a LINUX server, where each student has password-protected read-only access to 

their own rubrics. A companion script is provided to students which installs a scheduled task 

(cron job) on their account in order to copy their rubrics to their Windows-accessible institutional 

file storage automatically. This script updates the destination directory name to indicate the date 

of the last update, notifying students that new or updated rubrics have arrived. The file transfers 

for each student are scheduled to occur at different times to reduce strain on the hosting servers.  

A ‘self-destruct’ mechanism is built in to allow course administrators to remotely remove the 

scheduled tasks from student accounts once students have completed the course. 

 

Tool 4.3: Grades Database Updater 

 

This Python 3 script is run on the graded rubrics to store assignment, rubric, and grade 

information in a course MySQL database. The script is capable of automatically identifying and 

accounting for many expected variations in rubric layout while reading all information 

appropriately. The resulting data is stored in three separate tables, detailing the general 

assignment information (such as title, total possible points, date completed, and assignment 

type), question specific information (detailing each grading criterion, including the full text of 

the criterion, the points possible for full, partial, and failure to complete the criterion, and the 

line’s relative location on the rubric), and grade information (such as the student’s unique 

identifier, the grader’s name, the earned grade, and the student’s team, section, and professor). 

All FERPA-sensitive information is stored in a hashed format, mitigating risks to student 

confidentiality. The database is organized to be easy to search, query, or analyze as needed. Data 

sets can be constructed from nearly arbitrary requirements, such that analysis can be done on any 

set or subset of students, assignments, sections, teams, graders, or other dividing details.  

 

Tool 5.1: Faculty Grading Report Creation 

 

After the course database has been updated with the details from the assignment, this Python 3 

script is used to automatically generate a report on student performance on a given assignment. 

These reports include basic information about the assignment, overall statistics of student 

performance, statistical breakdown by section, criterion specific analysis, reports on the grades 

P
age 26.1761.7



and feedback given by individual course grading staff members, and notifications of any causes 

for concern with the assignment identified. These notifications include any single grading 

criterion with a mean classwide score below a predefined threshold, any large differences in 

performance between sections of the course on the entire assignment or individual criteria, 

grader performance substantially different than peer performance, and other basic diagnostic 

tools.  While these notifications are known to be potentially confounded by student team effects, 

grader effects, section effects, instructor effects, etc., they are suitable for directing instructional 

team attention to matters that may require additional investigation. The generated reports are 

automatically sent to the appropriate members of the instructional team for their review.  Sample 

report output for notifications is shown in Figure 2.  Samples of performance analysis appear in 

Figure 3 and Figure 4.  These images come directly from the automated tool. 

 

 
Figure 2 - Automated Notification Flags for Per-Criteria Performance of Concern 

 

 
Figure 3 - Automated Descriptive Statistics by Section and Grader (Names Redacted) 

 

P
age 26.1761.8



 
Figure 4 - Automated Per-section Per-criterion Averages 
 

Undergraduate course staff now regularly operate these tools for course assignments, and have 

written operations manuals as well as successfully training replacement staff.  We anticipate 

labor costs of system operation to be more than offset by other labor savings.     

 

Data Gathering 

 

It was not administratively desirable to bifurcate course grading such that one cohort of students 

and graders would employ the previous, paper-based grading system and another the newer all-

digital system at the same time.  The priority for course faculty during the transition was to 

ensure the error-free operation of the various tools, and while feedback from students and 

graders was informally sought at several stages, data was not retained.  For instance, several 

assignments were graded on a timed basis by our graders using both the old and new methods as 

an early version of the system was being prepared for use, and it was found that grading on the 

digital rubrics was equivalent in speed or faster for all graders versus paper, but the specific 

timing data was not retained once the decision to continue with development was made.  

Therefore, it is difficult to make quantitative statements about the improvements to efficiency 

and reliability offered by the new computerized course tools.  However, as the new systems offer 

new capabilities and eliminate certain classes of grading error entirely, some effects can be 

reported on qualitatively.  In the cases, the effects and benefits reflect a consensus of the faculty 

and grading staff actively involved with the use of the computer tools. 

 

Computer Tool Effects and Capabilities 

 

The effects and capabilities brought to the course by the development and use of the seven 

computer tools are summarized in Table 2.  Some of the advantages listed are with respect to 

grading digitally versus grading on paper, which may be less interesting to readers already 

employing all-digital grading processes. For example, Tool 4.2 lists "No potential for rubrics to 

be left in class, taken by another student, lost, etc. as with paper rubrics". However, effects or 

capabilities listed in bold extend beyond capabilities available through standard LMS 

deployments.  While most items in the table are self-explanatory between the text and the 

P
age 26.1761.9



examples shown in the Developed Computer Tools section, items marked with an asterisk in 

Table 2 receive further explanation subsequent to the table.  

 

Computer Tool Program Benefits to Course Administration or Pedagogy 

1.1: Submitted 

Assignment Processing 

-Automated enforcement of late submission penalties  

-Automated enforcement of incorrect file name submission penalties 

2.1: Personalized Grading 

Rubric Generation 

-Elimination of rubrics returned without, or with incorrect, student name, grader name, and/or 

team number information 

-Elimination of mathematical errors in grading student work, faster grading by automating 
final grade calculations  

2.2: Program Output PDF 
Generation 

-Reduce grading time by providing automatic compilation and output of student 

submitted programs in unified, convenient PDF format 
-Eliminate grading errors due to grader use of non-standard software, non-standard 

versions of software, non-standard compilers, or non-standard compiling flags when 

assessing student programs 

3.1: Rubric Collection  -Administrative convenience, no additional benefits 

4.1: Grade Compilation & 

Rubric PDF Generation 

-Checks for incomplete or invalid grader input, informs user if present 

-Assignment grades output automatically provided in various formats required for 

different administrative needs 
-Automatic inclusion of 'digital stickers' for exceptional work (requested by 

undergraduate grading staff, appreciated by at least some students) 

4.2: Rubric Return to 
Students 

-Work returned to students quickly, no need to wait for class 
-Students retain digital copies of their rubrics for later reference 

-No potential for rubrics to be left in class, taken by another student, lost, etc. as with paper  

4.3: Grades Database 

Updater 

-Automatic long-term archive of class performance information to enable future 

assessment & research* 
-Enables easy, sorted retrieval of nearly any grading data of interest, down to the level of 

individual assignment grading criteria 

5.1: Faculty Report 

Creation 

-Provides automatic, detailed assessment and feedback on student and grader 

performance for each class assignment* 
-Provides automatic notifications of situations of potential concern in assignment 

performance to faculty at overall and section-specific levels, allowing faculty 

investigation and intervention* 

Other Effects -Backup at every stage of the grading process permits detailed investigation and rectification 

if a grading error is discovered 

-Reduced printing costs and need for grading labor* 
 

Table 2 - Computer Tool Benefits 

 

Tool 5.1, the Faculty Report Creation tool, has potential benefits and effects that should be 

mentioned in more detail.  By understanding student performance on each assignment on a per-

criterion level, faculty have strong evidence to determine when problems exist in student 

understanding that are severe or recurring, directing faculty intervention (such as additional 

discussion or examples on the related topic) to areas of greatest need.  Unreported problems in 

assignments themselves have also been diagnosed through the discovery of low student 

performance. Similarly, large differences in performance between sections of the course (one 

item that is automatically flagged for review) prompt investigation into what a specific section 

did or did not do, potentially informing the faculty of specific classroom learning experiences 

that have proven particularly effective or ineffective.  Review and use of assignment 

performance data is made tremendously more frequent and efficient by automating the reporting 

of the data; time would not otherwise permit in-depth analysis of student performance on each 

assignment.  With the automated reports, the faculty are able to review and discuss performance 

on all assignments and any implications for the classroom at regular weekly meetings. 

 

P
age 26.1761.10



Tool 4.3, the Grades Database Updater, along with the grades database itself, also merits mention 

in more detail.  While other methods than a permanent database could be used to enable the 

Faculty Report Creation tool (its principal current role) the long-term promise of the database 

with respect to understanding student performance and success in the class is one of the greatest 

benefits of the system of tools developed.  By storing detailed data on student performance for 

every criterion of every assignment passing through the system over time, faculty hope to 

eventually examine aspects of student performance to answer interesting questions about the 

course overall.  For instance, common failure modes on different assignment types could be 

accurately determined over time and across many assignments or student performance could be 

related to demographic data including prior preparation.  One area of special interest is 

supporting students with no prior programming experience, such that performance on 

programming assignments is comparable between students with and without prior programming 

experience.  The grades database and the tool that updates it with data from each assignment 

therefore offer the potential of long-term course benefits difficult to predict at this time, 

including the potential to support educational research.  

 

The cost of system development (est. $1500) is expected to be recovered in one academic year or 

less through reduced costs for printing and grading labor.  It is estimated that between 60,000 

and 100,000 pages of rubrics and assignment output were either copied or printed per academic 

year to support class grading prior to the deployment of this system, which is now completely 

unnecessary.  The efficiencies from speeding grader assessment of student work have not been 

assessed over time (it is expected that regular users of the system will be faster than novices, and 

novice users tested as equivalent or faster than paper grading as previously mentioned), but 

informal surveys of grading staff indicate that the new system was seen as very convenient 

compared to the one it replaced.  The largest gains are reported to descend from the pre-prepared 

student programming output PDF's from Tool 2.2 and from not needing to physically retrieve 

and transport paper rubrics or student work from place to place.  

 

Discussion 

 

The analysis of grader performance as implemented in the reports from Tool 5.1 is limited in 

some important respects, by design choice.  The faculty were unwilling to require and pay for a 

subset of assignments be graded two or more times, which eliminates the possibility of 

implementing a robust system to examine inter-rater reliability.  Similarly, the faculty wished 

each grader to grade the same students across all assignments, as had been traditional, due to the 

relationships that graders formed with ‘their’ students, which was seen as producing superior 

interaction with and feedback to students.  This precludes accounting for grader effects by 

analyzing how different graders assessed different students.  The remaining tools, examining 

mean scores and standard deviations on a per-grader basis are confounded by student 

performance and therefore are less useful in directing faculty attention to unduly harsh or unduly 

lenient grading.  It does provide some evidence to examine when faced with student reports of 

unduly harsh grading and affords the faculty some feeling for how individual graders are 

performing.  Implementations of similar tools need not face these limitations if course leadership 

is willing to grade some assignments repeatedly and rotate graders – in these cases it would be 

much easier to gain insight into relative grader harshness and also to identify assignments with 

rubrics that have lower grader inter-rater reliability.  This could be used to focus faculty or 

P
age 26.1761.11



graduate staff attention on rubrics that do not adequately support the assessment process. 

 

The notification flags in the reports provided by Tool 5.1 are also face limitations, but for 

different reasons.  The primary limitation is that there are few hard references available with 

which to compare the performance of students of the course or individual sections of the course 

against.  Many of the notifications are somewhat arbitrary for this reason.  For example, the 

faculty decided that they would be like to be notified automatically when average performance 

on a criterion dropped below 75% not because 75% had intrinsic significance, but because that 

was the level of performance below which they would contemplate intervention to address a 

problem.  There is potential to use the grades database to build up an understanding of expected 

performance to judge when areas of concern should be automatically flagged, but this remains a 

future work.  Therefore, the notifications currently serve to prompt further discussion or 

investigation and are not sufficient of themselves to be diagnostic. 

 

Future work to develop additional tools that benefit from student and grader performance data is 

planned.  Currently, the automated analysis and reporting from Tool 5.1 focuses on a single 

assignment.  However, the potential exists for longitudinal assessment across multiple 

assignments.  One example of a future work in this area is a diagnostic tool for predicting student 

success in the course to direct faculty and staff support to students with low initial performance, 

similar to Purdue University's Course Signals system1.  Informed by data from past course 

cohorts, the potential for strong success prediction based on performance on a few early 

assignments is seen.  The potential for educational research based on student demographic data 

and longitudinal course performance is also observed.   

 

An additional future work is to begin capturing grader feedback to students, for the purposes of 

both understanding what feedback is being given and identifying graders who are consistently 

giving weak feedback to students.  Further development of tools 4.3 and 5.1 is ongoing to 

incorporate features along these lines. 

 

Conclusions 

 

The development and deployment of the computer tools described in this paper has increased the 

efficiency, reliability, and transparency of the grading process in a large enrollment course.    

While it is difficult to assess many of the benefits of these tools quantitatively, their 

administrative advantages are clear, the analytic insight into student and grader performance 

from the automatically generated reports is significant and helpful to the faculty, and the 

potential for future development of tools for course administration or research based on the 

grading information database is compelling.  Other large-enrollment courses may find value in 

creating standalone or LMS-integrated computer tools along similar lines, especially for the tools 

that support automated capture of student-submitted program output and course-specific learning 

analytics.  It is also noted that the cost of developing these tools was low and is expected to pay 

for itself in decreased printing and grading labor costs within one academic year after 

deployment, given the number of students and assignments served. 

 

 

 

P
age 26.1761.12



 

References 
 

1 Kimberly E Arnold, and Matthew D Pistilli, 'Course Signals at Purdue: Using Learning Analytics to 

Increase Student Success', in Proceedings of the 2nd International Conference on Learning Analytics and 

Knowledge (ACM, 2012), pp. 267-70. 

2 Kevin W Bowyer, and Lawrence O Hall, 'Experience Using" Moss" to Detect Cheating on Programming 

Assignments', in Frontiers in Education Conference, 1999. FIE'99. 29th Annual (IEEE, 1999), pp. 

13B3/18-13B3/22 vol. 3. 

3 Heidi A Diefes-Dux, 'A Teaching Assistant Training Protocol for Improving Feedback on Open-Ended 

Engineering Problems in Large Classes',  (2013). 

4 Christopher Douce, David Livingstone, and James Orwell, 'Automatic Test-Based Assessment of 

Programming: A Review', J. Educ. Resour. Comput., 5 (2005), 4. 

5 Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, Otto Sepp, #228, and #228, 'Review of Recent Systems 

for Automatic Assessment of Programming Assignments', in Proceedings of the 10th Koli Calling 

International Conference on Computing Education Research (Koli, Finland: ACM, 2010), pp. 86-93. 

6 Anders Jonsson, and Gunilla Svingby, 'The Use of Scoring Rubrics: Reliability, Validity and Educational 

Consequences', Educational Research Review, 2 (2007), 130-44. 

7 Marc Parry, 'Big Data on Campus', The New York Times 2012. 

 

 

 
 

P
age 26.1761.13


