
Paper ID #37127

Work In Progress: Beyond Textbook: An Open Educational
Resource Platform that Generates Course-Specific E-
Textbooks
Barney Wei

Mingyu Zheng

Mohammadreza Karamsoltani

RUI ZENG

Hamid S. Timorabadi

Hamid Timorabadi received his BSc, MASc, and PhD degrees in Electrical Engineering from the University of Toronto.
He has worked as a project, design, and test engineer as well as a consultant to industry. His research interests include the
application of digital signal processing in energy systems and computer networks. He also has deep interest in engineering
education and the use of technology to advance the learning experience of undergraduate students.

© American Society for Engineering Education, 2022
Powered by www.slayte.com

Work In Progress: Beyond Textbook: An Open Educational

Resource Platform that Generates Course-Specific E-Textbooks

Abstract

Beyond Textbook (BT) is an Open Educational Resources (OER) platform that combines an e-

textbook generation algorithm with a website interface. The frontend allows users to upload

lecture notes. Then, given a list of topics, the backend matches each topic with the most relevant

lecture notes, merges these lecture notes into one file, and finally generates a customized e-

textbook for users to view and download. BT is developed to provide instructors and students

with an e-textbook that is customized to specific requirements in a course. BT offers a zero-cost

avenue to deliver and access curriculum content in a standardized, but collaborative and dynamic

manner. The goal is to reduce the financial barrier to education, allow students to have access to

up-to-date educational content, and leverage modern technology to improve pedagogy and

learning. We proceeded with a trial run of BT involving both instructors and students in a first-

year course and collected their feedback. Survey results identified that all participants found BT

to be a useful educational tool and would use it upon its release.

1.0 Introduction and Motivation

Open Educational Resources (OER) are educational resources freely available to everyone. OER

links to a global educational movement that began about 20 years ago [1] to replace the existing

platform of paid textbooks with the goals of allowing students to have access to up-to-date and

relevant-to-course content, leveraging modern technology to improve teaching and learning, and

reducing the financial barrier to education [2]. OER addresses three main problems stemming

from paid textbooks: lack of variety in content delivery in terms of both perspective and medium,

out-of-date information, and textbook affordability. Textbook publishers try to address out-of-

date information by creating new editions, nevertheless, this forces students to purchase a new

revision of the textbook obsoleting the older ones. This exacerbates the problem of textbook

affordability which is a problem that is only getting worse as the textbook market is dominated

by five publishers that control over 80% of the course material [3]. Moreover, students can no

longer save money by sharing, buying used or renting hard copies of textbooks in the current

transition from hard copy e-textbooks. Studies show that students who use OER also perform

academically similar to students who use paid textbooks [4].

One of the main barriers to OER adoption is the difficulty to find content targeted and custom-

designed for individual courses [5]. As a result, we wish to introduce an OER platform, Beyond

Textbook (BT), that is tailored toward individual courses. We envision BT to contain an

amalgamation of key features of existing OER platforms: Coursera, where we will partner with

institutions to deliver course-specific content led by professional instructors with certificates of

completion; Khan Academy, where we will provide an informal learning option that allows users

to search and learn specific concepts; YouTube, where we will allow video contributions from

anyone to distill concepts in a straightforward and easily-understandable manner ranked by user

votes and comments; Wikipedia, where we will allow typed contributions from anyone which

will then undergo a peer-review process to deliver quality and accurate content; Chegg, where

we will provide detailed solutions to questions and offer discounted tutoring services; Piazza,

where we will include a community question-and-answer platform led by professional

instructors. Unique to BT, it will provide course-specific interactive and user-contributable e-

textbooks that will undergo peer-review to enable quality content. However, to start, we will be

scoping down the project and only focusing on generating e-textbooks from lecture notes to

allow course-specific content.

2.0 Existing Work

One of the state-of-the-art solutions for e-textbook generation is BBookX [6] which is an

automated web-based recommender system composed of two independent components. The first

is a table of contents generator that links book chapters to entire Wikipedia articles. The second

is an interactive user interface that allows manual real-time collaborative textbook creation by

users. The problem with the first is that it becomes the responsibility of the users to locate their

topics of interest in full Wikipedia articles, which are also written towards a specific target

audience and may be difficult to understand. The problem with the second is that it cannot scale

easily to replace other textbooks due to the need for large portions of manual input. In 2005,

Philip Parker filed a patent [7] to allow the automatic generation of content which he used to

author more than 200,000 books [8]. However, the algorithm is genre-specific and produces very

generic content with a target audience of people who are not proficient in searching the Internet.

Thus, to the best of our knowledge, no existing solution can generate consistent and coherent

text, convey relevant, concise and easy-to-understand information to explain course-specific

topics and at the same time, easily scale to replace textbooks from other courses.

3.0 Beyond Textbook

BT is an online work-in-progress OER platform that delivers customized, credible, and

continuously updated e-textbooks that closely follow course content at no cost in a standardized,

but collaborative and dynamic manner. BT allows users to upload lecture notes through its

website interface and then given a list of topics, users will be able to auto-generate a

personalized e-textbook from the uploaded notes. The backend algorithm determines the

relatedness metrics used to distill the database of notes using the provided topics to create the e-

textbook. Our solution is unique as it incorporates user inputs both for determining the topics as

well as the contents of a customized course textbook. Having users, students and instructors,

involved in the process of determining what would be included in the course textbook make BT a

solution that is unique and reliable.

3.1 Backend Matching Algorithm

The backend matching algorithm that takes typed lecture notes and user topic queries as inputs

and eventually outputs the customized e-textbook document is implemented using three key

concepts: (1) a keyword extraction algorithm proposed by Studart Rose et al. (2010) [9], (2) a

term frequency-inverse document frequency (TF-IDF) numerical statistic [10], and (3) GloVe

vectors [11].

The first stage of the backend involves the pre-processing of typed notes provided by instructors

and students. Supported file formats consist of DOC, DOCX, ODT, and TXT. These documents

will be converted into the open-source ODT file format using the LibreOffice command-line

interface. Conversion to ODT file type is chosen to ensure standardized file formatting while

being open-sourced and license-free to improve accessibility.

The second stage involves the parsing of ODT documents which consists of two separate tasks.

The first task is keyword extraction while the second is metadata collection. In the first task, the

content of each ODT document is categorized into three buckets: (1) file name, (2) headings, and

(3) paragraph content. The keyword extraction algorithm proposed by Rose et al. (2010) [9] is

then run on the content of each bucket. For each bucket, the extracted keywords and their

computed TF-IDF score (ratio of their number of occurrences against the number of words) in

the document are collected. In the second task, useful metadata such as the creation user ID, file

creation timestamp, file name, file path, file size, number of characters, number of pages, number

of words, etc. of each ODT document is collected. The data collected from both tasks are stored

in a MongoDB database. While the data collected from the first task is essential in the later

stages for query-to-document matching, data collected from the second task may be used as

filters to ignore certain documents.

In the third stage, the system takes a list of user queries of topics they want the generated e-

textbook to contain as input. This list is ordered in the sense that the topics covered by the

content of the generated e-textbook will follow the order of this list. The same keyword

extraction algorithm proposed by Rose et al. (2010) [9] is run on each query. To allow better

robustness in the matching process in the next stage, GloVe vectors [11] are used to identify the

ten most related synonyms in decreasing order of relatedness to each extracted keyword. At this

point, each query has been decomposed into one or more keywords with each keyword having

ten other synonyms most associated with it.

Continuing to the fourth stage, we use the TF-IDF numerical statistic to match each user query to

the most relevant ODT file based on whichever file has the highest overall TF-IDF score. We do

this by first assigning weights to the three buckets: (1) file name, (2) headings, and (3) paragraph

content in decreasing value with the file name having the highest relevancy. We also assign

different weights to the type of match: (1) keyword match or (2) synonym match with the

keyword match having the highest weight, and thus, highest relevance. A keyword match refers

to finding an exact match of a keyword extracted from the user query with a keyword extracted

from an ODT document. A synonym match refers to finding an exact match of one of the

synonyms of a keyword extracted from the user query with a keyword extracted from an ODT

document. Now, given a user query, we first try to conduct a keyword match for each of its

extracted keywords by querying the MongoDB database to obtain their TF-IDF score for each

bucket of each ODT document. If this is not successful, we fall back and try to conduct a

synonym match. If this continues to be unsuccessful, we skip this extracted keyword in question

and thus, ignore its contribution to the relatedness scoring. All these TF-IDF scores are

multiplied by their associated weights depending on bucket type and type of match. These scores

are then summed up for each ODT document to obtain its overall TF-IDF score associated with

the specific user query in question. The ODT document that has the highest overall TF-IDF score

then becomes the most relevant document to the user query. We continue this technique for each

user query and ultimately, each user query will be associated with the most relevant ODT

document.

The first and second stages constitute the ingestion process of the typed notes provided by

instructors and students as input. The third and fourth stages constitute the query-to-document

matching process where each user query is matched with the most relevant ODT document.

Finally, the fifth stage merges the relevant ODT documents in order of the user queries to

generate the customized e-textbook. If identical ODT documents exist in the list to be merged,

subsequent identical documents are ignored. Figure 1 illustrates all these backend stages.

3.2 Frontend Website Service

For users to access our online platform, they first need to register or log in with a unique

username and a 6-character-length password. After logging in, they can browse through all

uploaded materials by categories and keywords. The hierarchy we use to guide users includes

University, Course, and Topic (e.g., “arrays”). These options can be searched and selected from

dropdown menus if they already exist. Otherwise, users can easily add a new instance. Appendix

D provides screenshots and details of the Website Service Interface.

To contribute new materials to the platform, users must first navigate to the page of a specific

topic of a specific university’s course. Then, they need to add some additional information about

the uploaded note. For instance, they can indicate whether this note is a lecture, tutorial, or

practical session note, by selecting the category from the dropdown menu. Another example is

that they can indicate the year and semester of this note, like 2021 Fall. Finally, after adding all

the necessary information, contributors can upload their notes. A submission response page will

show up and guide contributors to submit another query or return to the home page.

On the other hand, users who want to build customizable textbooks from uploaded resources

must create a syllabus first, either by typing in a list of topics on their own or uploading a PDF

syllabus to let our algorithm do the extraction work. The syllabus extraction algorithm will

generate a list of topics that users can modify before they proceed to the next step. The next step

is to add some filters, including semester, instructor, session etc., to the desired textbook. Our

backend algorithm will fetch all the materials with the highest relevance to users’ needs and

generate an e-textbook. Then, users will be brought to the preview page from where they can

also go back if they find any modifications needed. Finally, if they are satisfied with the current

version, they can click the download button to save a local copy of the generated e-textbook.

Figure 1 illustrates the system block diagram that includes both the frontend and backend.

Figure 1: System Block Diagram of BT.

4.0 Evaluation and Student Reception

To evaluate the usability and effectiveness of BT and receive real feedback from its intended

users, we decided to have a class of first-year computer engineering students use BT for their

first programming course. For the evaluation process, students were given regular course notes

and textbook recommendations as their main learning materials and used BT as a parallel source

of information to better facilitate their learning process. After making BT available to students,

we surveyed them to receive feedback on the usability, effectiveness, and accuracy of BT. The

main conclusions and takeaways from the surveys received from the students are listed below.

Fifteen first-year computer engineering students enrolled in their first programming course

participated in our survey. They were all questioned on what learning materials they use for their

course and they all mentioned that they do not use the recommended textbook for the course and

instead use professors’ notes or other sources. Also, the majority of them (80%) indicated that

they generally find textbooks to be only somewhat useful or not useful at all which indicates the

lack of usability and resourcefulness of textbooks in general among post-secondary students. On

the other hand, over 85% of the participants found BT to be either very useful or useful and the

remaining 15% found it to be somewhat useful. In addition, all of the participants mentioned that

they would use BT as a new educational platform/tool upon its full release. We also collected a

set of recommendations and improvements that can be performed to enhance BT’s functionality

and usability. Figure 2 compares the usefulness of various course materials based on survey

results:

 Beyond Textbook Course Textbook Professor Notes Other textbook Other written Online
 resources materials/notes videos/classes

Figure 2: Usefulness of various course materials from the student survey.

5.0 Conclusion and Future Work

BT has been under development since Fall 2021. By sharing course-related resources, this

platform aims to enable post-secondary instructors and students to deliver and access up-to-date

course-related content at zero cost in a standardized, collaborative and dynamic manner. The

platform is hosted on a website where users can upload lecture notes, search for academic

resources, and build customized textbooks. Meanwhile, our backend algorithms will ensure that

the generated textbook is most suitable to the user’s needs and facilitate the generating process.

In order to collect feedback from the end-users of our product, we surveyed fifteen first-year

computer engineering students at our institution who were enrolled in their first coding course.

Among all participants, over 85% of them found BT to be either very useful or useful and the

remaining 15% found it to be somewhat useful, considerably higher than course textbooks that

only rated 20% very useful or useful. Also, all participants mentioned that they would use BT as

a new educational platform/tool upon its complete release. Students also recommended a few

improvements and features to be implemented for the complete release of BT.

In the future, BT will include improvements to complement its core features such as having

different user types and privileges, copyright checking, a note vetting process, and an automated

process for ensuring notation consistency across all uploaded notes. Furthermore, BT will

include many add-on features, such as a question-and-answer platform. Unlike traditional

textbooks, the content of the e-textbooks generated by BT will include videos, user comments

(Q&A), and other interactive elements to enhance education and understanding. The nature of e-

textbooks also allows quick searching for keywords and related content. Moreover, a mobile app

version of the BT, in addition to the web version, will be released facilitating accessibility.

References

[1] Bliss, T J and Smith, M. 2017. A Brief History of Open Educational Resources. In:

Jhangiani, R S and Biswas-Diener, R. (eds.) Open: The Philosophy and Practices that are

Revolutionizing Education and Science. Pp. 9–27. London: Ubiquity Press. DOI:

https://doi.org/10.5334/bbc.b. License: CC-BY 4.0

[2] “Open Education,” SPARC. [Online]. Available: https://sparcopen.org/open-education/.

[Accessed: 19-Oct-2021].

[3] Cailyn Nagle, Kaitlyn Vitez, and U.S. PIRG Education Fund, “FIXING THE BROKEN

TEXTBOOK MARKET Second Edition.” Public Interest Research Group, Jun-2020.

[4] J. Hilton, “Open educational resources and college textbook choices: a review of research on

efficacy and perceptions,” Springer Link, 19-Feb-2016. [Online]. Available:

https://link.springer.com/article/10.1007/s11423-016-9434-9. [Accessed: Jun-2021].

[5] D. Munro, J. Omassi, and B. Yano, “Step One: What Are OER, Why Are They Important,

and What are the Barriers to Adoption?,” OER Student Toolkit, 26-May-2016. [Online].

Available: https://opentextbc.ca/studenttoolkit/chapter/step-one-what-are-oer/. [Accessed:

19-Oct-2021].

[6] B. K. Pursel, C. Liang, S. Wang, Z. Wu, K. Williams, B. Brautigam, S. Saul, H. Williams,

K. Bowen, and L. C. Giles, “BBookX: An Automatic Book Creation Framework,”

ResearchGate, Apr-2016. [Online]. Available:

https://www.researchgate.net/publication/303518885_BBookX_Design_of_an_Automated_

Web-based_Recommender_System_for_the_Creation_of_Open_Learning_Content.

[Accessed: Jul-2021].

[7] P. M. Parker, “Method and apparatus for automated authoring and marketing.”

[8] N. Cohen, “He wrote 200,000 books (BUT computers did some of the work),” The New York

Times, 14-Apr-2008. [Online]. Available:

https://www.nytimes.com/2008/04/14/business/media/14link.html. [Accessed: July-2021].

[9] Rose, Stuart & Engel, Dave & Cramer, Nick & Cowley, Wendy. (2010). Automatic

Keyword Extraction from Individual Documents. 10.1002/9780470689646.ch1.

[10] T. Mei, “Demystify TF-IDF in Indexing and Ranking,” Medium, 22-Dec-2019. [Online].

Available: https://ted-mei.medium.com/demystify-tf-idf-in-indexing-and-ranking-

5c3ae88c3fa0. [Accessed: 22-Nov-2021].

[11] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014.

Appendix A - Project Requirements

To aid in defining the scope of BT in its initial form, Table A.1 illustrates its project

requirements.

Table A.1: Requirements Table

Category ID Project Requirement Description

Functional

Requirement

F1 Store PDF files along with

additional information

uploaded by contributors.

Contributors include but are not limited to

students and professors.

F2 Implement an algorithm that

returns files corresponding

to given topics.

Given a list of topics, the backend shall

return a list of files corresponding to the

topics.

F3 The application shall be able

to combine the list of files

together and create a new

PDF file.

Combine multiple PDF files together into

one new PDF file.

F4 Implement an algorithm that

can look into files and

identify topics in them.

For example, if a user uploads a note file

of a lecture that covers ‘loops’ and ‘if

condition’, the algorithm shall identify

these two topics and return a topic list.

F5 Return combined textbook

reaches 6/10 satisfactory

score on content relatedness

from 25 students

Digital survey for university students to

provide scores of their satisfaction based

on relatedness of the generated textbook.

Constraint C1 Compatibility: Microsoft

Edge

The web interface must be compatible with

the Microsoft Edge browser.

Objective O1 Minimize generation time The generation time includes time in F2

and F3. We aim to optimize our algorithm

to minimize query time.

O2 Implement a feedback

system in the application.

We wish to have a page for users to

provide feedback and rate the PDF files in

the database.

The rating can be useful when we try to

implement F2 and achieve O3.

O3 Maximize content

relatedness

(Return top-rated notes

In F2, we return a file that corresponds to a

topic. If there are multiple files in the

database that match the topic, we aim to

combination) return the one with the best rating. This

rating can be provided by the feedback

system in O2.

Since users’ ratings can reflect content-

relatedness, choosing the best rating will

contribute to O3.

O4 Maximize compatibility We aim to expand the compatibility to

include more types of browsers, like

Google Chrome, Safari, Firefox etc.

O5 Implement an algorithm that

can look into files and break

down files according to

topics

For example, if a user uploads a note file

of a lecture 3 that covers two topics:

‘loops’ and ‘if condition’, the algorithm

shall be able to separate the file into two

files that only have one topic in each.

O6 Implement an algorithm that

can rate files automatically

by given criteria.

The application can rate files without the

feedback system in O2.

Appendix B - Sample Typed Notes as Input

Figures B.1 to B.8 are screenshots of the typed notes from the first lecture of APS 105

(Computer Fundamentals) course that allowed to concretize inputs to BT.

Figure B.1: Screenshot of page One of APS 105 (Computer Fundamentals) Course notes,

Lecture 1 – an Introduction to Printf() and Scanf().

Figure B.2: Screenshot of page Two of APS 105 (Computer Fundamentals) Course notes,

Lecture 1 – an Introduction to Printf() and Scanf().

Figure B.3: Screenshot of page Three of APS 105 (Computer Fundamentals) Course notes,

Lecture 1 – an Introduction to Printf() and Scanf().

Figure B.4: Screenshot of page Four of APS 105 (Computer Fundamentals) Course notes,

Lecture 1 – an Introduction to Printf() and Scanf().

Figure B.5: Screenshot of page Five of APS 105 (Computer Fundamentals) Course notes,

Lecture 1 – an Introduction to Printf() and Scanf().

Figure B.6: Screenshot of page Six of APS 105 (Computer Fundamentals) Course notes,

Lecture 1 – an Introduction to Printf() and Scanf().

Figure B.7: Screenshot of page Seven of APS 105 (Computer Fundamentals) Course notes,

Lecture 1 – an Introduction to Printf() and Scanf().

Figure B.8: Screenshot of page Eight of APS 105 (Computer Fundamentals) Course notes,

Lecture 1 – an Introduction to Printf() and Scanf().

Appendix C - Verification Table

Table C.1 identifies the verification methods to test BT for functionality and correctness.

Table C.1: Verification Table

ID Project Requirement Verification Method

1.0 Store PDF files along

with additional

information uploaded by

contributors.

TEST: upload notes and randomly pull 20% from the

database to check for existence.

Pass if all test files exist, else fail.

2.0 Implement an algorithm

that can return a list of

files given a topic in

decreasing order of topic

frequency existing in its

content.

TEST: given topics and check if returned files match those

topics in decreasing order of topic frequency.

Pass if all topics each return a list of files in decreasing

order of topic frequency.

3.0 The application shall be

able to combine a list of

files together and create

a new PDF file.

TEST: given a list of files and the ordering for combination,

check if the output PDF file contains all the file content

without overlapping or missing content.

Pass if returned single PDF file for 2 sets of data containing

all files in order without overlapping or missing content

4.0 Implement an algorithm

that can identify topics

from files.

TEST: given a file, and check if returned topics match

word(s) that exist in its content.

Pass if returned topics match existing word(s) in the file,

else fail.

5.0 Compatibility TEST: directly go through all pages to check if there are

any bugs such as broken links.

Pass if frontend layout showing content and effect as

desired design in Microsoft Edge.

6.0 Return combined

textbook output file

reaches 6/10 satisfactory

score on content

relatedness from 25

students

TEST: provide digital surveys to 25 students who have tried

out our platform and collect and calculate average

satisfaction scores on content relatedness from them.

Pass if the average score meets or exceeds 6 out of 10, else

fail.

Appendix D - Website Service Interface

Figures D.1 to D.6 are screenshots demonstrating a few samples of the BT interface

Website Service.

Figure D.1: Shows the login page. The navigation process starts from this login page. This page

allows a user to choose to log in or register for a new account. Subsequent navigation on BT’s

web interface maintains the user’s login credential until a logout is processed.

Figure D.2: Shows a registration page that allows a user to sign in to BT and create an account.

Figure D.3: Depicts the landing page. The landing page is where a user can choose to search

existing notes using keywords (Keyword Search tab). This page also allows a search by college

name, course name, or a certain topic name that can be reached via drop down menu.

Figure D.4: Illustrates the Contribute window. A user can contribute his/her own notes by

clicking on the Contribute button that opens the Contribute window.

Figure D.5: Shows the Keyword Search where user can specify a keyword and hence searching

the database content for the keyword. Then any material that contains the keyword will be loaded

for the user’s access in decreasing order of relevancy.

Figure D.6: Depicts the User Feedback page. This page provides users a means of providing

feedback, comments, and suggestions that can be considered by staff.

