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Introduction 

Recent literature and Industry 4.0 discussions [1] have highlighted the need for engineering 

graduates to gain computational facility in all stages of ill-posed, industry-relevant problem 

solving, from problem framing to understanding of and confidence in algorithm output. 

Chemical and mechanical engineering students grapple with both ordinary and partial differential 

equations in their engineering coursework using computational methods that they may not have 

been prepared for in their introductory differential equations (DE) course in a separate 

mathematics department.   

Aspects of DE course delivery examined here include instructor choices of analytic and 

numerical methods, instructor incorporation of programming or software packages in lectures 

and/or assignments, and instructor use of disciplinary examples. The goal of the larger project of 

which this report is an initial subset is to characterize problem-solving competencies that 

chemical and mechanical engineering students transfer from their upper-division mathematics 

courses to their core engineering courses. To date, participation in the study across three 

universities has included 10 engineering instructors, 6 DE instructors, and 15 engineering 

undergraduates. Findings of the study are anticipated to inform both mathematics and 

engineering faculty as (1) many math programs are experiencing the need to evolve DE course 

delivery into an increasingly computational endeavor and (2) many engineering programs may 

find support for students’ increased computational problem-solving through collaboration with 

math educators on DE course design.  

Conceptual Framework 

This qualitative study falls into the well-precedented category of research on transfer of learning. 

While transfer is understood as the activity of applying knowledge acquired in one setting to 

novel setting-specific circumstances [2], the traditional cognitive construct is augmented in this 

study by the harnessing of the preparation for future learning (PFL) framework [3]. PFL 

forefronts the activity of knowing with prior learning and sensitization to properties and 

techniques even if the learner is unable to specifically articulate their grasp of the concepts. This 

knowing-with process is deemed central to students’ capacity to access prior mathematical and 

computational skill in a way which transcends their rote imitation of procedures. That is, when 

encountering novel problem scenarios, the extent to which students might apply prior 

mathematical and computational approaches is likely to be determined by their understanding, or 

even feeling, of how their skill set applies, as opposed to their memory of its prior applications. 

Thus, the extent to which their grasp of mathematical and computational tools survives the 

transit between DE instruction and later engineering application may be related to the manner of 

their engagement with tools in DE instruction [4],[5]. 

Participants, Setting, & Data Gathering 



Data gathering is underway at three western U.S. four-year degree granting universities housing 

ABET-accredited chemical and/or mechanical engineering programs. These programs were 

chosen because DE figures prominently in the prerequisites of several core courses. Evidence 

and perspectives from mathematics instructors, engineering instructors, and engineering students 

who have previously taken DE are being gathered. Sources of data include course artifacts (e.g. 

syllabus, textbook) [6], preliminary survey, instruction observations, instructor interviews, and 

task-based student interviews [7]. Data analyzed in this initial report include engineering 

instructor and student interviews from an engineering analysis course (3 students) and a 

dynamical modeling course (2 students). Both are 300-level courses in which MATLAB 

computing is used on a regular basis to solve differential equations and the students enrolled 

completed DE approximately one year prior to the study. 

Preliminary surveys distributed during initial class visitations are used to identify DE instructors 

of the current group of engineering students and catalog which mathematics and engineering 

courses in which the student participants are and have recently been enrolled. Interviews with 

DE instructors will continue as engineering instructor interviews and class observations 

conclude.  

Student interviews consist of two question types. The first is a group of open-ended questions 

about the role of technology in their mathematics and engineering experience, perceptions of 

applicability of tools across disciplines, and perceptions of preparedness for computing in 

engineering. The second question type follows the posing of four differential equation problem 

scenarios of graduated complexity and level of engineering context. Problems were assembled 

with the aid of three experienced DE instructors at two of the participant universities. (The first 

two problems, to which initial student responses will be discussed here, are included in Table 1.) 

Engineering instructor interviews pose similar, but more direct, questions about the role of 

technology and preparedness of students for numerical and computational methods. The four 

graduated-context differential equations are also shown to instructors. Instructor anticipated 

methods of approaching the problems is compared with student methods of approaching the 

problems, with special attention to mentions of the relevance of computing for solving or 

analyzing each problem. 

Analytical Framework. An analytical framework based on themes of DE teaching and learning 

concern in the literature has been constructed. The prongs of the analytical framework comprise 

the following four dimensions: 

*Analytic-numerical: This dimension characterizes an instructor’s use of analytic and 

numerical techniques in the solution of differential equations. Analytic methods include 

symbolic and algebraic manipulation to produce succinct symbolic representations and numerical 

methods include estimating and/or visualizing behavior on a restricted interval. 

*Computational-analog: This dimension characterizes an instructor’s attitudes toward, 

references to, and use of technology. Computational technologies include computing activities 

such as the use of mathematical software packages for either identifying or visualizing solutions, 



and writing and/or running computer code to implement solution algorithms. Analog 

technologies refer primarily to the use of pencil and paper for working out solutions. 

 *Transmission-inquiry: This dimension characterizes an instructor’s methods of content 

presentation and student engagement as more transmissionist or more student-centered [8]. 

Modes of engagement such as active learning, problem-based learning, and collaborative 

learning will be classified together on the inquiry end of the instructional spectrum. 

*Disciplinary examples: This dimension characterizes the use of mathematical examples 

in the course structure, including: the types of disciplines represented by the examples, the extent 

to which examples are sourced from or align with a textbook, the extent to which examples are 

implemented using analytic or numerical methods, and the extent to which examples are 

implemented using computational or analog methods. 

The research question asked in this subset of the larger study is: How do these mathematical, 

computational, and pedagogical aspects of delivery style in DE courses affect chemical and 

mechanical engineering students’ computing experiences in later DE applications? 

Initial Findings  

This report includes initial observations from the first several weeks of the study, including 

instructor-anticipated and actual student problem-solving approaches using only the 

computational-analog, analytic-numerical, and disciplinary examples dimensions. Furthermore, 

while four problem situations are shown to students and instructors in interviews, only initial 

observations about the first two contextless problems are summarized here. Problem 1 is a first-

order non-linear ODE and problem 2 is a second-order non-homogeneous ODE, both shown in 

Table 1. Perspectives from instructors and student participants in two courses, engineering 

analysis and dynamic modeling, are summarized. Students who are shown these problems have 

not yet been asked directly about their past DE course, but only about their general engineering 

and mathematics experience, to prevent artificially cuing students regarding anticipated problem 

structures or strategies. 

Table 1 

Problem 1 Problem 2 

 

 

 

 

Problem 1. This is a problem used by Boyce & DiPrima [9] as an example to illustrate Euler’s 

method. The instructor of the engineering analysis course anticipated that problem 1 would 

present no difficulty for students, intimating an analytic solution was within reach. The instructor 

of the dynamic modeling course concluded that a numerical solution would be simplest, but 

anticipated that this approach would likely not occur to students.  



First student reactions to the problem included recognition of a differential equation (2 students), 

recognition of first order (1), and recognition of an initial value problem (3). Students either 

connected this course to their DE course or to experience in a course such as kinetics, dynamics, 

or physics, but not to both. None of the five student participants in the two courses included 

numerical methods of solution among their possible approaches. For problem 1, the use of 

physical terminology was associated with characterization of the problem by students as low 

difficulty. 

The two students who characterized the examples used in their prior DE course as highly 

relevant and helpful explicitly identified problem 1 as a differential equation. These two students 

were also the only ones to use terminology and approaches that would be used by a DE instructor 

in approaching the problems, such as “first-order initial value problem” and outlining the process 

of separation of variables followed by integration, even though that precise terminology was not 

used. Interestingly, neither of these two students who reported the highest usefulness of DE 

examples used physical terminology (position, velocity, momentum, etc.) to describe what they 

saw in this problem.   

Problem 2. For problem 2, none of the students used DE terminology such as “2nd order” or 

“nonhomogeneous”. Three students talked about the higher difficulty of this problem. Two 

students reported they would put the problem into an online equation solver, one reported they 

would seek out a YouTube video, one would try to simplify the equation with a trig identity, and 

the fifth student articulated no particular problem-solving strategy.  

The engineering analysis instructor anticipated that students wouldn’t connect this problem to 

“the rest of their universe,” an expectation that appears to have held with the students from that 

course, as none of those three students either used physical terminology or referenced any course 

other than DE in making problem connections. 

The dynamic modeling instructor once again felt a numerical solution was most appropriate for 

problem 2, and was the only individual in the group to explicitly mention the complicating t 

factor on the right-hand side. Only the two student volunteers from this course both explicitly 

discussed the right-hand side of the problem, one referring to its “sinusoidal pattern” and the 

other inferring that “something is going around a curve, or following some nonlinear path.” One 

of this pair of students was also the only one to make any mention of waves in making sense of 

the problem. 

Computing. Three students reported using MATLAB for the first time this term, and all report it 

as challenging. The two students who came into the semester feeling prepared to code in 

MATLAB included one who took a MATLAB course and one who took a C course. Students 

who had been briefly exposed to MATLAB during their DE course did not count themselves as 

having prior MATLAB experience.  

Two students took the C course, and while one of them found it has increased their preparedness 

and confidence with MATLAB, the other reported they are struggling with the differences. 

Interestingly, the instructor of the engineering analysis course confirmed that students who opt 



for the MATLAB prerequisite computing option struggle with MATLAB, while those who take 

the “more serious” C/C++ programming course do well in MATLAB.  

The two student participants from the dynamical modeling course reported having been taught 

numerical methods in DE, but not having hands-on computing experience in the class. The three 

students from the engineering analysis course reported neither training in numerical methods nor 

computing experience in their DE course. 

Discussion 

Regardless of these problems’ suitability for analytic or numerical approaches, and regardless of 

students’ reported comfort level with mathematical coding, students exhibited no instinct to 

include numerical/computational methods in their grappling with the problems. Neither the 

students in the dynamic modeling class, who are seeing computational treatments of problems on 

nearly a daily basis, nor the students in the engineering analysis course who are seeing both the 

analytic and computational treatments of the same or similar problem structures within weeks of 

each other, expressed any instinct to treat these two problems, each of which is challenging using 

analytic methods, with numerical/computational methods. An early speculation on the reason for 

this is students’ inability to recognize that any problem is amenable to computational solution. 

Students may also associate numerical methods only with problems that have been explicitly 

staged for discretization and coding. Future investigation will include examining student instincts 

to use computational methods when problem complexity is increased even further. 

Students that recalled specific DE course terminology and reported higher estimation of the 

usefulness of the examples in the course did not tend to think about either the first or second-

order problem in terms of physical interpretations. Students who seemed at a loss for explicit 

mathematical terminology, and who incidentally reported less satisfaction with DE course 

examples, used physical interpretations such as displacement and acceleration to describe what 

they saw in the problems. This gives an initial impression of a difference in the cognitive tools 

used to understand the problem, depending on whether it is connected to a DE course experience 

or to a kinetics, dynamics, or physics course experience. These different perspectives of problem 

interpretation can be viewed in the PFL framework as potential categories of knowing-with that 

lead students to different paths of problem grappling. 

Timeline for remaining data gathering is currently on track to be completed in June 2021. 

Analysis of anticipated and actual student work with differential equations from both 

mathematics and engineering perspectives is expected to provide insights into transferable 

competencies across a range of computational delivery styles of DE instruction. 
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