
Paper ID #37002

Work-in-Progress: Enabling Secure Programming in C++ &
Java through Practice Oriented Modules
Kenneth Andrew Guernsey

Jacob Matthew Tietz (Purdue University Northwest)

Graduated from Purdue University Northwest with a Bachelors in Computer Engineering.

Quamar Niyaz

Quamar Niyaz received the B.S. and M.S. degrees in computer science and engineering from Aligarh Muslim University,
in 2009 and 2013, respectively, and the Ph.D. degree from The University of Toledo, in 2017. He has been an Assistant
Professor in computer engineering with the ECE Department, Purdue University Northwest, since 2017. He has published
papers in the areas of computer and networks security, applied machine learning, and cybersecurity education. His
research has been sponsored by the National Science Foundation.

Xiaoli Yang

Dr. Xiaoli (Lucy) Yang is currently the chair and professor of the Department of Computer Science and Engineering at
Fairfield University. Dr. Yang’s main research interests include virtual/augmented reality, , cybersecurity education,
machine learning applications, and software engineering. She has published more than 80 papers in journals and refereed
international conference proceedings, and one book by Springer. Dr. Yang has received grants from NSF-National Science
Foundation, Indiana Commission of Higher Education, Northwest Indiana Computational Grid Grant, and NSERC-
Natural Sciences and Engineering Research Council of Canada.

Ahmad Y Javaid (Dr.)

Ahmad Y. Javaid received his B.Tech. (Hons.) Degree in Computer Engineering from Aligarh Muslim University, India in
2008. He received his Ph.D. degree from The University of Toledo in 2015 along with the prestigious University
Fellowship Award. Previously, he worked for two years as a Scientist Fellow in the Ministry of Science & Technology,
Government of India. He joined the EECS Department as an Assistant Professor in Fall 2015 and is the founding director
of the Paul A. Hotmer Cybersecurity and Teaming Research (CSTAR) lab. Currently, he is an Associate Professor in the
same department. His research expertise focuses on application of computational intelligence to various computing
domains including but not limited to education, cybersecurity, healthcare, human-machine teaming, and digital forensics.
His projects have been funded by various agencies including the NSF (National Science Foundation), AFRL (Air Force
Research Lab), NASA-JPL, Department of Energy, and the State of Ohio.

Sidike Paheding

© American Society for Engineering Education, 2022
Powered by www.slayte.com

Work-In-Progress: Enabling Secure Programming in C++ & Java

through Practice Oriented Modules

Kenneth Andrew Guernsey1, Jacob Matthew Tietz1, Quamar Niyaz1, Xiaoli

Yang2, Ahmad Y Javaid3, Sidike Paheding4
1ECE Department, Purdue University Northwest, Hammond, IN 46323

2CSE Department, Fairfield University, Fairfield, 06824, CT, USA
3EECS Department, The University of Toledo, Toledo, OH 43606

4Applied Computing, Michigan Technological University, Houghton, MI 49931

1. Introduction

In today’s society, we are becoming more reliant on technology all around us even for the simplest

of tasks. We find increasingly more ways to embed technology into everything we do, which

makes life simpler but also brings an underlying issue of cybersecurity beneath the surface.

Cyberattacks are growing at an alarming rate with the average cost of $3.86 million for a data

breach [1]. One of the key reasons for the growing cyberattacks is the lack of relevant industry

workforce. In 2020, the Inter-agency security committee reported that the cybersecurity workforce

must grow by 89% to defend critical organizational assets [2]. With the scarcity of cybersecurity

experts in the industry workforce, a strong alternative is to expand the knowledge of the software

developers to program with a cybersecurity mindset and enable them to use secure software

development practices. A major problem encountered in computer science (CS) and computer

engineering (CE) curricula is the lack of emphasis on cybersecurity awareness. Students develop

programs and software in multiple programming languages, but are inherently unaware of the

problems associated with these languages. Students are tasked with completing assignments and

labs using the instructed methods, which are usually given under “perfect” conditions, i.e. an input

will always be valid. This structure is great for learning the topic at hand, but vulnerable if students

make habits out of assuming these conditions replicate the real world. Students must be made

aware of the problems that coincide with writing code, which will serve as a great foundation and

understanding as they continue to develop their knowledge on more advanced topics within their

education.

Many institutes have attempted to address the lack of cybersecurity awareness in industry

workforce by introducing dedicated courses, tracks, and degree programs into their curricula [3-

9]. Although this is a substantial step in the right direction, some problems arise when observed

carefully. Cybersecurity degree programs develop experts in the field, but not at a high enough

rate to benefit the large gap that exists within the cybersecurity workforce. Cybersecurity courses

are efficient at raising awareness to the students who enroll in them, but offered as senior-level

elective courses in many CS/CE programs. There is a lack of “bridging” in programming courses

that would allow students to understand how programming and cybersecurity are intertwined with

one another. If students were given the opportunity to learn the importance of cybersecurity in the

programming courses, there would be more enrollment in the security courses that traditionally

require a strong understanding of programming as well [10]. Students have the opportunity to take

these cybersecurity courses with a prerequisite of programming courses. Once the security course

is completed, the materials learned in the course will not be enforced further in their education as

many CS/CE courses enforce little to no cybersecurity awareness unless the student is continuing

with more individual projects. On the other hand, many CS/CE courses have an opportunity to

help strengthen the ability of students to react to certain situations. The opportunity stated before

is the ability to reinforce simple cybersecurity practices, as well as enforce cybersecurity

awareness throughout the courses. This can ensure that students are taught to use skills learned in

cybersecurity classes in a variety of environments other than the cybersecurity course itself.

The approach that we took to this problem is to develop independent modules corresponding

to the introductory topics in C++ and Java, which are taught in programming courses in most

engineering schools. These modules will be used alongside students’ coursework to emphasize

certain security issues within the given language. This allows students to learn about basic

cybersecurity topics alongside the programming languages, enforcing a strong foundation and

understanding. It is important to mention that nowadays a programming course (e.g. C, C++ or

MATLAB) is common in the electrical engineering (EE) curriculum at the freshman or sophomore

level. Therefore, the developed modules will not only benefit CE or CS students, but also EE

students in learning the fundamentals of cybersecurity concepts in programming.

In this work-in-progress paper, we present the design, formatting, and structure of the modules

that we developed. The topic for each module is discussed detailing how the vulnerability is

exposed to the student, and how we approached a solution. Finally, future work is discussed as we

plan to dive further into the subject of integrating cybersecurity in undergraduate curricula.

2. Related Works

There have been significant efforts made for incorporating cybersecurity in CS/CE courses in the

past few years. For example, Towson University has created a website that focuses on concise

modules [11, 12]. It provides a good starting point for students to understand the importance of

cybersecurity. However, these modules do not have the user actually fix any security flaws, it only

serves to point them out and offer solutions to them. The main emphasis of these modules is to

ensure secure coding by using a checklist in which students can go one by one to make sure they

take care of every checkpoint. These modules are also limited in the scope of covered materials,

but received positive feedback from students.

In [13], the authors emphasized cybersecurity awareness through exercises. They taught the

importance of creating robust code in introductory courses and integrated lecture materials that

focused on common secure programming issues. These exercises were mostly focused on a web

development course; and they gave huge emphasis on input validation. In a software engineering

course, three main areas were focused: case studies, code review, and version control. A large

emphasis was placed on reviewing problems that occurred in real world environments, and the

exercises discussed strategies to prevent it.

In [14], the approach was taken in the form of lectures. A survey was conducted with course

instructors about what cybersecurity issues affect the information taught in their corresponding

courses the most. Once the instructor was able to allocate time, a 75 minutes lecture was given to

the students who chose to attend. The topics discussed were the same as the instructor mentioned

previously. After the lecture, a questionnaire was given to the students for feedback; the results

showed that the majority of students found the cybersecurity topics discussed during the lecture

were interesting, useful, and relevant.

Compared to the previous efforts, we have developed interactive modules for comprehensive

understanding of cybersecurity in each topic. Students can go through the code in each module

and fix security vulnerabilities in it. As time progresses we will not only expand the number of

modules we currently have, but also the complexity of the vulnerabilities will also increase with

the ongoing project.

3. Methodology

We decided to develop cybersecurity modules for C++ & Java as they are widely used in

introductory programming courses. While designing these modules, we kept in mind that the topics

must be relevant to real-world issues that we face in the software industry. We used a variety of

resources and benchmarks to ensure the authenticity of our chosen topics including Common

Vulnerabilities and Exposures (CVE) and Common Weakness Enumeration (CWE) websites [15,

16]. While selecting the module topics for development, we had some restrictions, for example,

the topics must be introductory and easy to understand. These modules are geared towards

freshman or sophomore level undergraduate students who have just started programming. The

security modules that we developed have the following main components as shown in Figure 1:

 Handouts & Animated slides – we prepared handouts and presentation slides with

animation components to inform students of vulnerabilities, explaining how they occur,

and how to respond to them.

 Lab assignments – They are used to enforce the information given in the handouts and

slides in interactive ways. Students will be given questions and scenarios in which they

will see firsthand how the vulnerabilities occur, and how to respond to them.

 Code templates – They are frameworks in which students will write code to complete the

lab assignments. The purpose of these is to give the student an environment that emphasizes

the problem at hand allowing them to focus on the vulnerability corresponding to the lab

assignment.

 Complete solution – We have prepared the solution source code for the instructors to

check students’ work, if instructors are adopting these modules in their courses. These

solutions could also be used by students to verify their code if they work on the modules

independently.

4. Common Programming Vulnerabilities

The first step towards the development of these modules was to research and analyze the most

common programming vulnerabilities students may encounter. The decisions for the topics in the

modules weighed heavily on the content taught in introductory programming courses, and on

websites such as CWE and CVE. We ultimately came up with the following topics in which we

believe students should be aware of, and know how to address them.

4.1 Input Validation

In introductory programming courses, students are introduced to the idea of receiving user input.

Lab assignments or projects are typically assigned that can relate to the real world ideas. It is

important to demonstrate to students at an early level that the real world does not replicate the ideal

conditions taught in the courses, and we must take certain precautions. It is necessary that when

working with external data, whether it comes from a keyboard, file, or server, it must be checked

before being passed to a method. Validating input can prevent a multitude of problems from

Figure 1: Various components of cybersecurity modules developed for C++/Java.

occurring including program crashing, incorrect data flow inside the program, and unexpected

results.

4.2 Integer Overflow

Integer overflow is a programming issue that happens with numbers too big or small to be stored

in the selected integer data types. C++ and Java have multiple representations for integers with

different storages, for example, 8, 16, 32, and 64 bits are used to store char, short, int, and

long integers, respectively. The default type of integers is signed that allows them to “wrap”

around negative numbers once they reach the maximum value. The risk at hand is when an

incorrect value is flowing through the program causing a trickle-down effect wherever the variable

is used.

4.3 Random Number Generation

Students are introduced to random number generation early in their programming courses as a

small subtopic that can be used in future labs and/or projects. Students are not really exposed to

the applications of random number generation and the actual engineering behind it, along with the

risks it poses. The risk occurs when one is involved with sensitive data like passwords, or

cryptography. The methods students are exposed to generate random numbers are deterministic.

This implies that the numbers generated using a carefully designed and consistently repeated

algorithm are not “truly” random that poses risks as adversaries can run brute force algorithms to

predict the random numbers generated through a deterministic method to crack passwords, session

tokens, and so on [11].

4.4 Null Pointer Reference

Any student exposed to an object-oriented programming language is certainly going to be involved

with classes, objects, and methods.

Students need a solid understanding of

reference-type data types and how a

literal called null can be injected into a

program. When null is injected into a

program, the compiler does not allocate

memory for the null object, so if a

statement references an object or a

variable with this value, an exception

will be thrown. If the exception is not

handled correctly, the program will crash

and stop running.

4.5 Constructors, Public & Private Keywords

Constructors are used to initialize objects from classes. Based on their implementation, they assign

initial values to class variables. This can be directly helpful to address the Null Pointer Reference

problem as any reference-type data types in the class can be given an initial value instead of null.

The keywords public, private, and protected are used to implement data encapsulation into the

programs. The public keyword allows a variable to be accessed and modified by any class, which

is not recommended as programmers should control who can modify the variables within their

classes. The private keyword allows a variable to be modified and accessed only by the class

inside which it has been declared. This provides a layer of security as the programmer can control

Figure 2: Try/Catch block for Input Validation.

who can modify the variable. If access to the variable is needed to provide outside its class, then

get() and set() methods must be implemented for them.

5. Overview of Developed Modules in C++ and Java

In this section, we provide an overview of a few modules that we developed for introductory

programming courses in C++ and Java.

5.1 Modules developed for an Introductory Java Course

5.1.1 Input Validation

To prepare students better for situations in which they may encounter input validation, it has been

emphasized that external data input cannot be trusted. The objective for this module is to discuss

three main ideas: i) need for input validation ii) types of input validation, and iii) approach for

input validation. We discuss that input validation is must because improper validation of external

data may cause problems like program crashing, incorrect data flow, unexpected results, and

security vulnerabilities. Following that, we provide overview of different types of input validation

including type, length, range, divide by zero, and format. We then discuss how we can validate

input, and the two methods we suggested were Try and Catch blocks and regular expressions.

An example of Try/Catch blocks is shown in Figure 2, taken from the PowerPoint slides that we

prepared.

The lab assignment is focused on having the students validate different types of input based on

the situation. They are given the code outline and asked to modify given methods based on the

specific task they are given. Once they complete the assignment, they can either submit it to an

instructor for evaluation or use

the provided solution code to

check their work if learning

independently. Figure 3 shows

an example of a completed

question. The method

validateUsername()

initially assigns a user input to

the string variable username.

Then, the while loop checks that if string username fails the pattern in regular expression or is an

empty string. The regular expression allows only lowercase and uppercase letters for username. If

either of these conditions are true it will prompt the user to enter a valid username.

5.1.2 Integer Overflow

In this module, we discuss the multiple ways to trigger an integer overflow. The objective of this

module was to cover four main ideas:

 What types of integers are there?

 Why must we prevent integer overflow?

 How does an integer overflow occur?

 How can we prevent integer overflow?

An integer overflow must be prevented because it can cause problems such as program

crashing, incorrect data flow, unexpected results, and security vulnerabilities. In our learning

module, we describe the two main types of integer overflow: arithmetic overflow and conversion

overflow. Arithmetic overflow is when a mathematical operation is performed and the result is

stored in an integer value that is too small. Conversion overflow is when an integer is converted

Figure 3: Regular expression for input validation.

to a different data type i.e. type-casted, and the destination data type is too small to hold the original

value. The lab assignment is focused on having the student visualize integer overflow firsthand,

by both arithmetic and conversion. In the lab assignment, students are given a variety of different

numbers and are asked to determine which integer data type would fit best. They are also given a

sequence of steps they must follow to visualize the orderly occurrence of an integer overflow.

Once the student has completed the assignment, they can either submit it to an instructor or use

the provided completed solution to check their work. An example of a completed question is shown

in Figure 4. It shows the lab assignment that simulates a simple cafeteria store. Students are asked

to enter an option: 0, 1, or 2. The option 0 will “leave” the store, while options 1 and 2 allow

purchasing items of different prices. The variables totalQuantity and price are both initially

set as byte data types, which have a maximum value of 127. Students are then instructed to enter

specific values to show three main conditions:

 Both variables store data correctly as the input is smaller than 127, and the result of the

multiplication is smaller than 127.

 Only the quantity variable stores the data correctly as the input is smaller than 127, and the

result of the multiplication is larger than 127, causing the variable price to wrap around.

 Both variables store data incorrectly as both the input and the multipiction result are larger

than 127.

By performing the tasks in order, students will be able to visualize that the price variable is

highly prone to overflow as it stores the multiplication result. Students are expected to fix the

problem by changing the data types of two variables mentioned previously. Students need to be

aware of the nature of signed

numbers. Students must

understand that once a signed

integer reaches its maximum

value, it wraps around with a

negative value. Ensuring that

students use the correct data type

when assigning a value can be

crucial to prevent overflows.

Students being aware about which

mathematical operations are at risk

of growing quickly for values is

also essential, like exponential,

multiplication, and factorials.

When performing tasks with the

risk of growing quickly, validating

parameters to ensure that numbers

will not be too large would work as an effective method as well.

5.1.3 Random Number Generation

The main idea behind this module is that students should have a solid understanding between the

deterministic and non-deterministic random number generation. The module focuses on four main

topics:

 How to traditionally generate random numbers?

 What are the usages of random numbers?

Figure 4: Listing for integer overflow in the store problem.

 What are the risks of deterministic random number generation?

 What is the secure way to generate random numbers?

First, we comment on how an

introductory programming course

might introduce random number

generation, i.e., invoking Java’s

Math.random() method. We

then discuss risks of using

deterministic random number

generation as numbers generated are pseudo-random and not truly random [9]. With this

knowledge, students should understand not to use this random number generation technique when

dealing with sensitive data and other things of that nature. Ensuring that students understand the

usage of the correct type of random number generator can guarantee little vulnerabilities in their

programs caused by the random number generator itself. When working with sensitive data, web

applications, and cryptography, Java implements its own non-deterministic random number

generator class SecureRandom that students are encouraged to use.

Although there is no lab assignment for this module, there is a Java program for students to

run. The program is a “guessing game” in which a random number is generated and the student

must guess the number. Once the number is guessed correctly, the program returns the time that it

takes to guess the number and the number of guesses. The student has the option to let the computer

guess the number as well, in which we implemented a simple binary search algorithm to find the

number. The reasoning for this lab is to help students understand how fast computers can calculate

and how certain things can be guessed through brute-force.

5.1.4 Null Pointer Reference

The main goal of this module is to help students fundamentally understand what is null, and how

to avoid the run-time NullPointerException. Four main concepts are discussed in this

module:

 What is null?

 How does null enter into the program?

 What is NullPointerException?

 How to avoid null & NullPointerException?

First, we laid a basis on the concept of null. We discuss that null is a default value for

uninitialized variables of reference type and its binary representation is all 0’s. We then discuss

that NullPointerException is a run-time error that occurs when following conditions are met:

 A method is called with a null object.

 Attempted access to an instance variable of a null object.

 A null object is passed as an argument.

 Retrieving length or indices for a null array.

Figure 5: Secure random number example in Java

We then discuss how we can avoid

NullPointerException with

four different methods shown in

Figure 6 taken from our

PowerPoint slides. These methods

ensure that an object should not be

null before using it. These are

accomplished in two main ways by

using either logical operators or

methods inherited from the Object

class. By ensuring that the value of

an object is not null before its

usage, the program will not crash by

throwing the NullPointerException. The lab assignment for this module allows students to

visualize how null can be injected into a program through misuse of constructors, and calling

methods with a null array. Figure 7 shows an example of the code students are expected to write

while completing the lab assignment.

5.1.5 Constructors, Private & Public Keywords

The purpose of this module is to give students a solid

understanding of data encapsulation and constructors.

The objective of the module was to enforce three main

ideas:

 What are constructors?

 What are the public and private keywords?

 What are get/set methods?

We begin by discussing what is a constructor and

its application. We go into detail about how this is a method, which is called when an instance of

an object is created or initialized. We also discuss how constructors are used to initialize variables

contained within an object. We then discuss the difference between private and public keywords,

and their advantages and

disadvantages. The get() and

set() methods are explained in

detail about how they are used to

access private variables to either

gather or set their values.

The lab assignment for this

module is focused on students being

in-charge of a ticket booth at a

basketball game, and they must focus

on implementing constructors and get/set methods correctly. They are given a test file to evaluate

whether or not their code is correct. Figure 8 shows an example of what students are expected to

write while completing the lab assignment. The figure shows code snippet for the Customer,

which is a constructor and BuyTicket() method that takes an object of TicketBooth class as

a parameter. The student must use a get method to get the value of a TicketBooth variable,

Figure 6: Null pointer module for Java.

Figure 7: NullPointerException code snippet.

Figure 8: A code snippet for constructor module.

which is set as private. Students are expected to do this with a multitude of variables throughout

the lab assignment.

5.2 Modules developed for an Introductory C++ course

5.2.1 Integer Overflow

In this module, students must figure out how to take a valid input that does not overflow the

variable they are using it to store the input. The code snippet in Figure 9 is one of the ways students

can achieve this. Students must also figure out how to detect an integer overflow that occurs due

to addition, subtraction,

multiplication, and division.

This is done by providing

students with a scenario in

which they will find out

implications of not

checking for an overflow.

The code snippet in Figure 10 can be used to solve this problem. It involves taking the sum which

may or may not have overflowed then does the reverse operation. In this case, it performs

subtraction to test if an overflow has occurred as it will produce a different result if an overflow

has occurred. This module uses constants in the

limits library to show students the minimum and

maximum values of different variable types. The

bitset library is used to display the underlying

binary of each number a student inputs into the

example file. This helps the student visualize what

is happening during the overflow.

5.2.2 Random Numbers

With modern hardware only ever increasing in speed, random numbers become easier and faster

to brute force through simple methods. This module includes a guessing game in which students

can experiment with guessing random numbers of varying length. It will also display the time that

students take to guess the random number. For the main problem of the module, students are given

skeleton code in which they experiment with generating seeds for pseudo-random number

generation. There is also a simple loop, which iterates up to show students just how fast every

single number up to the maximum random number can be guessed.

5.2.3 Dangling Pointers

Pointers are used to point to memory locations containing variable data. They store addresses,

which are memory locations of the data. If a piece of data has a singular pointer pointing to it, that

is the only way to access that data; if that pointer were to be deleted, the data would be stuck not

being able to be accessed or deleted. When memory cannot be accessed or deleted, it is a memory

leak, it takes up memory whilst being completely useless. This can happen if a pointer points to a

value, then that pointer is modified to point to a different value, leaving the first value inaccessible.

Dangling pointers, on the other hand, are pointers that point to memory that has been freed. If

memory is freed, it can be overwritten. Accessing memory that may have been overwritten can

Figure 9: Valid range check for integer input.

Figure 10: Overflow check in addition.

lead to undefined and seeming random behavior

of a program. A dangling pointer can be created

by calling “delete” along with a pointer name.

This frees the memory at the location the pointer

points to but does not delete the pointer or change

where the pointer points, creating a dangling

pointer. A dangling pointer can be fixed by either

assigning a new address to the pointers or setting

them to NULL which sets them to be null pointers.

In this module, students are challenged to use only

three addresses to complete a series of

calculations all of which have their own pointers

but must be properly set to null pointer after use

for avoiding dangling pointers. This helps the

student deepen their understanding of pointers.

5.2.4 Parameter Mismatch

In C++, function parameters can differ from what

the function call sends to the function all whilst

not showing any signs of odd behavior. What can

happen is when the function asks for a short integer but receives an int for example, which may

cause overflow problem inside the function when performing its task. If the int that was sent to

the function was larger than what could fit into a short, that would be loss of data, the int would

be truncated to fit into the short. This may seem easy to avoid at first, but in large projects with

many developers, small details like this are easily missed. It is also not just the input parameters;

the return values can also be forced into the wrong type of variable, which can cause issues as well.

If a function returns a double, but then the returned value is stored in an int, this would also

cause loss of data. In Figure 11, students are given four inconsistent functions all with different

return types and input parameter types. These functions are then called and their return values are

stored in different data types than the return types, which can cause data loss if the variable in

which the function returns is stored is not of adequate type. The solution to overcome with these

issues is to make sure that students understand multiple data types and the size difference between

them by setting all the input parameters and returning values to values that will not cause a loss in

data.

6. Conclusion and Future Works

In this work-in-progress paper, we discussed multiple programming modules developed for

enforcing the secure programming mindset in introductory programming courses on C++ and Java.

The modules will guide students through specific cybersecurity topics to improve their skills and

help students in their future programming careers by teaching them the necessary skills to prevent

common cybersecurity vulnerabilities. Future work will include developing more modules focused

on more advanced topics in Java and C++ taught later in the CS/CE curriculum. Before

disseminating these modules for adoption in different institutes, we will evaluate their impact in

delivering cybersecurity concepts for secure programming. We will use these modules in our

programming courses in Fall 2022 and Spring 2023 at Purdue University Northwest, The

University of Toledo, and Michigan Technological University; and assess students’ performance.

For each module, pre-module and post-module surveys will be conducted to measure students’

Figure 11: Code snippet for parameter mismatch.

learning for cybersecurity concepts relevant to the topic. Students’ submission will also be

evaluated to investigate their logic to solve a module. In addition, we will also take students’

feedback for each module for its quality and documentation. Based on students’ evaluation and

feedback, we will revise our modules and disseminate them to other institutes for adoption in

programming courses. A website will be hosted for the distribution of these modules to other

institutes.

References

1. “Cost of a Data Breach Report”, IBM Security [Online]. Available:

https://www.capita.com/sites/g/files/nginej291/files/2020-08/Ponemon-Global-Cost-of-Data-

Breach-Study-2020.pdf. Accessed Mar 27, 2022.

2. “Cybersecurity Professionals Stand Up to a Pandemic,” (ISC)2 Cybersecurity Workforce

Study, 2020 [Online]. Available: https://www.isc2.org/-

/media/ISC2/Research/2020/Workforce-Study/ISC2ResearchDrivenWhitepaperFINAL.as.

Accessed Mar 27, 2022.

3. Sami Krause, “College of Business launches new cybersecurity management programs,”

[Online]. Available: https://communique.uccs.edu/?p=118684. Accessed Mar 27, 2022.

4. R. Weiss, F. Turbak, J. Mache, and M. E. Locasto, “Cybersecurity education and assessment

in EDURange.” IEEE Security & Privacy, 15(03), 90-95.

5. N. Rahman, I. Sairi, N. Zizi, and F. Khalid. “The importance of cybersecurity education in

school.” International Journal of Information and Education Technology, 10(5), 378-382.

6. A. Igonor, R. L. Forbes, and J. McCombs, “Cybersecurity Education: The Quest to Building

Bridge Skills.” ISSA Journal, 17(18), 18-26, 2019.

7. T. Lowe, and C. Rackley. “Cybersecurity education employing experiential learning.” KSU

Proceedings on Cybersecurity Education, Research and Practice, 5, 2018.

8. J. Ricci, F. Breitinger, and I. Baggili. “Survey results on adults and cybersecurity education.”

Education and Information Technologies, 24(1), 231-249.

9. W. A. Hill Jr, M. Fanuel, X. Yuan, J. Zhang, & S. Sajad (2020). “A survey of serious games

for cybersecurity education and training.” KSU Proceedings on Cybersecurity Education,

Research and Practice, 7, 2020.

10. Jason M. Rubin, “Can a computer generate a truly random number?” Online. Available:

https://engineering.mit.edu/engage/ask-an-engineer/can-a-computer-generate-a-truly-

random-number/. Accessed Mar 27, 2022.

11. “Cybersecurity Modules: Security Injections,” [Online]. Available:

https://cisserv1.towson.edu/~cssecinj/, Accessed Mar 27, 2022.

12. S. Raina, S. Kaza, and B. Taylor. “Security Injections 2.0: Increasing Ability to Apply

Secure Coding Knowledge Using Segmented and Interactive Modules in CS0.” In

Proceedings of the 47th ACM Technical Symposium on Computing Science Education,

2016.

13. K. Nance, B. Hay, and M. Bishop. “Secure Coding Education: Are We Making Progress?” In

16th Colloquium for Information Systems Security Education, 2012.

14. C. Yue. “Teaching computer science with cybersecurity education built-in.” In 2016

USENIX Workshop on Advances in Security Education (ASE), 2016.

15. “Common Weakness Enumeration: CWE”, Online. Available: https://cwe.mitre.org/,

Accessed Mar 27, 2022.

16. “Common Vulnerabilities and Exposures (CVE)”, Online. Available: https://cve.mitre.org/,

Accessed Mar 27, 2022.

